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1 Introduction

To understand the regulations of cell functions in complex biological systems, it is very important to
identify various cell types in the systems. Take nervous systems as example, the cell type diversity
is still poorly understood so that the most of the brain functions remain a mystery. Also, even the
cells with the same cell type might play different roles in different phases. Therefore, classification
of different phases of cells is also important. For now, several of the cell type classification works
are based on principal component analysis (PCA) with manual curations. This project aims to apply
deep learning methods to extract non-linear features from the single cell RNA-seq data and use the
feature in other classification or clustering methods. The ultimate goal of this project is using deep
learning to generate deep features to help classify/cluster unknown cell types in order to discover
new cell types.

2 Materials and Methods

Previous work
From literature survey, papers have been found to use denoising autoencoders to extract deep fea-
tures and analyze the parameters or do clusterings with the features. Our first step is also to select
Autoencoder model because its simplicity, good performance in many papers and it can generate
compact representations of high dimentional inputs. The concept of autoencoder is to reconstruct
the original input with smaller hidden layer so that the hidden layer can be regarded as the com-
pressed code for the input.

Tools selected
Keras tool, which uses Theano as backend, is adopted to perform the deep learning part because it it
easy and fast to start.

Datasets preparation
4 mouse RNA-seq datasets with 3007 samples and 15 cell types in total are adopted. The 15 cell
types includes bone-marrow-derived dendritic cells (BMDCs) and embryonic cells from tissues.
Among the datasets, 335 samples have original labels and will be treated as testing set. The labels
of remaining samples are all expression-based so they are not included in our testing set. In the
integrated dataset, 20520 genes are the intersection genes. A subset of genes is also selected as input
dimension since 20520 genes might take too much time to train the deep network. LINCS landmark
genes is selected because it has only 978 genes and can capture about 80% information of original
set of genes. The datasets are all converted to transcript per million (TPM) format and are processed
with 0/1 normalization before integration.
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Network architectures
Two architectures of neural networks (NN) have been tried: one hidden layer of size 100 and three
hidden layers with the smallest layer of size 100 and size

√
input dimension/100 ∗ 100 inter-

mediate layers. This size of intermediate layers is choosed because we want to preserve the same
compress ratio between each layers. Take figure 1 as an example, the input dimension is 8, the code
layer is 2, so the intermediate layer is 4. Also, since there are two values of input dimension, four
models in total have been trained. The training batch size is set to 32 and the network is minimized
by stochastic gradient descent method with learning rate 0.1.

Figure 1: The neural network structure

The flowchart of this project is shown in figure 2. To evaluate the performance of deep features,
PCA features are selected for comparison and classification and clustering are performed. For clas-
sification, two popular methods, Random Forest (RF) and Support Vector Machine (SVM), with
four sets of manually chosen parameters are performed on each feature. For clustering, K-means++
is applied to the same set of features. The number of clusters is set to 15, which is the number of cell
types in the labeled dataset. 100 random initializations of K-means++ are performed and the best
configuration is selected to compute adjusted random index (ARI) as the performance measurement.
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Figure 2: The flowchart of methods of this project

3 Result

Figure 3: The classification and clustering results

Figure 3 shows the experiment results of classification and clustrering of PCA and deep features.
ACC denotes accuracy. We have choose the PCA with two different setting, fitting all the data and
fitting only labeled data. Also, different number of principle components (PC) coordinates have
been selected for PCA features, where 335 is the size of the labeled dataset and 100 is the size of the
code layer of neural network. The best performance PCA on SVM is 0.97, which is slightly greater
than the best NN performance 0.94. Besides, the best performance PCA on RF is 0.94, which is
also slightly greater than the best NN performance 0.92. Therefore, it could be claimed that PCA
classification performance are slightly better than NN. Besides, the best performance of PCA is 0.49
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where the best performance of NN is 0.57. Clearly, NN is much better than PCA in k-means++
clustering. When compared to the original dataset, classification performance of PCA and NN are
no better than original data in SVM, while PCA is better in RF and NN has generally the same
performance. In clustering, both PCA and NN features are better than original dataset in general.

4 Conclusion

From the results, it can be observed that PCA is slightly better than NN in classification but NN is
much better than PCA in clustering. Since our ultimate goal is discovering new cell types, the result
of clustering is more important than classification. We assume that NN can somehow learn non-
linear biological information from the input and help clustering performance. Also, the expected
result of landmark genes is no better than the set of all genes, and the result corresponds to our
assumption. This result shows that if we use only landmark genes to speed up the model training
time, we could lose important biological information that can help distinguish new cell types.

5 Future Work

Since neural network has so many parameters to learn, one possible future plan is to integrate more
dataset to increase training set size and include more cell types. About the network architecture,
it is a good idea to try denoising autoencoder with corrupted input as the deep feature extraction
model to prevent overfitting and obtain the denoised codes. Besides, biological information such
as protein-protein interaction network and transcription factors can be used to constructed network
structures to reduce the number of parameters to train to reduce training time and prevent overfitting.

6 Reference

Gupta, Aman, Haohan Wang, and Madhavi Ganapathiraju. ”Learning structure in gene expression data using
deep architectures, with an application to gene clustering.” Bioinformatics and Biomedicine (BIBM), 2015
IEEE International Conference on. IEEE, 2015.

Tan, Jie, et al. ”ADAGE-Based Integration of Publicly Available Pseudomonas aeruginosa Gene Expression
Data with Denoising Autoencoders Illuminates Microbe-Host Interactions.” mSystems 1.1 (2016): e00025-15.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley
and Y. Bengio. Theano: new features and speed improvements. NIPS 2012 deep learning workshop. (BibTex)

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley and
Y. Bengio. Theano: A CPU and GPU Math Expression Compiler. Proceedings of the Python for Scientific
Computing Conference (SciPy) 2010. June 30 - July 3, Austin, TX (BibTeX)

keras tool website:
http://keras.io/

LINCS landmark genes website:
http://support.lincscloud.org/hc/en-us/articles/202092616-The-Landmark-Genes

Deng, Qiaolin, et al. ”Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in
mammalian cells.” Science 343.6167 (2014): 193-196.

Tasic, Bosiljka, et al. ”Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.” Nature
neuroscience (2016).

4

http://keras.io/
http://support.lincscloud.org/hc/en-us/articles/202092616-The-Landmark-Genes


Usoskin, Dmitry, et al. ”Unbiased classification of sensory neuron types by large-scale single-cell RNA
sequencing.” Nature neuroscience 18.1 (2015): 145-153.

Shalek, Alex K., et al. ”Single-cell transcriptomics reveals bimodality in expression and splicing in immune
cells.” Nature 498.7453 (2013): 236-240.

5


