Drug Synergy Prediction Challenge

Chieh Lin, Po-Wei Wang, Yan Xia

Project Supervisor: Ziv Bar-Joseph

December 13, 2015

Synergy: What and Why

What is synergy?

 $\mathsf{Effect}(\mathsf{A},\mathsf{B}) = \mathsf{Additive_Effect}(\mathsf{A},\mathsf{B}) + \mathsf{Synergy}(\mathsf{A},\mathsf{B})$

Why is synergy important?

- 1. Help prevent deadly drug combination side effects
- 2. Help develop new drug combination therapies

Dataset: From Synergy Prediction DREAM Challenge

Given

- Mono therapy: Live rates of drug *a* on cell *c*.
- Combined therapy: Live rates of drug *a*, drug *b* on cell *c*.

Problem Definition

 Perform integration on the synergy effect => synergy score (target value of contest)

Modeling Strategies

Additive Damage Model (from literature) (baseline)

Fit the mono-therapy curve to predict combined-therapy data

Naive Regression (baseline)

Use (kernlized) logistic regression models to fit synergy score directly

Locality Model

Predict the combined-therapy data based on the locality of mono-therapy and combined-therapy.

Model: Additive Damage Model (baseline)

From literature

Proposed by Jones, Leslie Braziel, et al. (2014)

Idea: Curve fitting

Assumption: The curve is decreasing and has a sigmodial shape

Background: Gene Expression and Drug

Gene Expression Data						
	Cell1	Cell2	Cell3	Cell4		
Gene1	4.80449	8.71356	8.49596	7.81344		
Gene2	2.84813	2.83472	2.887	2.87933		
Gene3	10.332	10.5047	9.64344	10.2727		
Gene4	5.14539	3.79219	4.15447	4.05039		
Gene5	3.54519	3.94666	3.30731	3.70149		

∃ >

Function

Chieh Lin, Po-Wei Wang, Yan Xia

Model: Naive Regression (baseline)

Naive Feature vector

A and B are drug indices, C is cell index Feature: $[Drug_A; Drug_B; GeneExpression_C]$

Idea: drug vector should be sparse

Use lasso regression to learn non-zero elements of $Drug_A$, $Drug_B$ Solve: $Drug_A \cdot GeneExpression_C = min_live_rate(drug A)$

Kernel

- 1. RBF kernel
- 2. Polynomial kernel with degree 2

Model: Locality

Observation

The shape of combined therapy is similar to nearby mono-therapy.

The Algorithm of Locality Model

The Model

Predict live rate $\hat{E}_{\alpha,\beta}$ by

$$\hat{E}_{lpha,eta} \coloneqq \mathsf{E}_{lpha} - (\sum_k \mathsf{a}_k b_k c_k + oldsymbol{b} \cdot oldsymbol{c}) \cdot (E_eta - E_{eta 0}),$$

where α, β are the dosage of drug *a* and *b*, and $E_{\alpha} \leq E_{\beta}$

- Drug vector should be sparse.
- Want the integrated difference instead of every $E_{\alpha,\beta}$

Solve

$$\min_{drug} \|drug\|_1 + \lambda^{mo} \sum_{i \in \text{mo}} \sum_{\alpha} (\hat{E}^i_{\alpha} - E^i_{\alpha})^2 + \lambda^{co} \sum_{i \in \text{co}} (\sum_{\alpha,\beta} w_{\alpha,\beta} (\hat{E}^i_{\alpha,\beta} - E^i_{\alpha,\beta}))^2,$$

where $w_{\alpha,\beta}$ is the numeric integral constant.

$$\begin{split} \min_{drug} \|drug\|_{1} + \lambda^{mo} \sum_{i \in \text{mo}} \sum_{\alpha} (\hat{E}_{\alpha}^{i} - E_{\alpha}^{i})^{2} + \lambda^{co} \sum_{i \in \text{co}} (\sum_{\alpha,\beta} w_{\alpha,\beta} (\hat{E}_{\alpha,\beta}^{i} - E_{\alpha,\beta}^{i}))^{2}, \\ \text{where} \quad \hat{E}_{\alpha,\beta}^{i} := \mathsf{E}_{\alpha}^{i} - (\sum_{k} \mathbf{a}_{k}^{i} \mathbf{b}_{k}^{i} \mathbf{c}_{k}^{i} + \mathbf{b}^{i} \cdot \mathbf{c}^{i}) \cdot (\mathbf{E}_{\beta}^{i} - \mathbf{E}_{\beta0}^{i}), \\ \hat{E}_{\alpha}^{i} := \mathbf{E}_{\alpha0}^{i} - (\mathbf{a}^{i} \cdot \mathbf{c}^{i})(\mathbf{E}_{\alpha}^{i} - \mathbf{E}_{\alpha0}). \end{split}$$

• Non-convex, but convex quadratic in every single coordinate.

- Developed a proximal coordinate descent algorithm to solve it.
- Maintain $\hat{E}_{\alpha,\beta}$ to save computation.

Naive: $O(\#data(\#feat)^2) \rightarrow DP:O(\#data\#feat)$ per iteration, where #feat can be all genes or poly2 expansion on cell features.

Results

Important note provided by contest holder

Redo the experiments will have \sim 0.5 pearson correlation

Regression: 5-fold CV	Mean Correlation
Poly2 kernel	0.22
RBF kernel	0.23

Use only mono therapy	Mean Correlation	
Additive Damage Model	0.16	
Naïve Locality	0.21	

Locality: 5-fold CV	Mean Correlation	Training	Average Non-zero terms
Gene Groups: 1000 iterations	0.28	0.48	8.32
Poly2 Expansion: 10 iterations	0.28	0.45	1.03

500

Chieh Lin, Po-Wei Wang, Yan Xia

Synergy

Conclusions

- From fitting parametric curve to locality model
 - New way to construct live rate by mono-therapy.
 - No need to worry about the choice of curve.
- L1 + Poly2 expansion can leads to good result with controllable non-zero terms
 - our best model w/ avg 1.03 non-zero feat/drug.
- New proximal coordinate algorithm with linear complexity to #feat.
- A systematic study to model drug synergy effect with little domain knowledge (pathway, protein protein interaction, etc.)

References

- AstraZeneca-Sanger drug combination prediction DREAM challenge: https://www.synapse.org/ "# "!Synapse:syn4231880/wiki/235645
- Jones, Leslie Braziel, et al. "The additive damage model: A mathematical model for cellular responses to drug combinations." Journal of theoretical biology 357 (2014): 10-20.
- http://www.slideshare.net/tejamba/pharmacology-45460271
- https://en.wikipedia.org/wiki/Gene
- http://chalice.horizondiscovery.com/chaliceportal/documentation/analyzer/models/model'add.jsp