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1 Introduction

For machine learning and statistical models, cross-validation (CV) method is widely used for model
selection and performance estimation. The philosophy of CV is to split the limited amount of data
into training set and validation set. The validation set can be the ”new data” for estimating the
performance of the model. Since CV only assumes that the data are identically distributed and the
training set are independent from validation set, CV is universal and can be applied to almost all of
frameworks such as regression, density estimation, and classification. The most popular CV schemes
are leave-one-out (LOO) cross-validation, and K-fold cross-validation. However, even the most
naive implementation of cross-validation with K data splits has a complexity of K times the model
training time. This might be impossible to do depending on how expensive the model training is.
This project aims to survey the frameworks that have closed-form cross-validation expressions and
figure out the theoretical basis of each closed-form expression. To be more specific, we will focus
on (LOO) and leave-p-out (LPO) cross-validation schemes where p can be any number between 1
and n − 1 where n is the size of training set. With this information, the risks of the models built in
these frameworks can be easily estimated by the studied closed-form expressions. From literature
survey, it is known that closed-form formulas of LOO and LPO risk estimator have been derived for
projection estimator, histogram estimator(which is a special case of projection estimator), and kernel
estimators for density estimation. For least squares in linear regression, closed-form formulas for
LPO estimators are also derived in regression for regressogram, kernel and projection estimators.
For regressogram and kernel estimator in regression, additional assumption on data and the kernel
functions need to be satisfied, which makes these two closed-forms not universal, so the detail of
these two LPOs is not covered in this project.

2 Notations

Framework of density estimation with squared loss
X1, ..., Xn ∈ [0, 1] are independent and identically distributed random variables drawn from a prob-
ability distribution P of density s ∈ L2([0, 1]) with respect to Lebesgue’s measure on [0, 1]. Set ŝ
to be any estimator belonging to a given class F . The L2−risk of the estimator ŝ is

R(ŝ) = Es[||s− ŝ||22]. (1)
The goal is to find s∗ such that

s∗ = argmin
ŝ∈F

R(ŝ) = argmin
ŝ∈F

Es[||s||22 + ||ŝ||22 − 2

∫
s(x)ŝ(x)dx] = argmin

ŝ∈F
L(ŝ) (2)

Where
L(ŝ) = Es[||ŝ||22 − 2

∫
s(x)ŝ(x)dx] (3)

Note that s∗ is unreachable due to its dependency on s.
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LPO cross-validation risk estimators for density estimators
Let X1, ..., Xn be independent identically distributed random variables. For p ∈ {1, ..., n − 1},
Let ep be the set of all possible size p-subsets of {1, ..., n}. For any e ∈ ep, ē = {1, ..., n}\e and
X ē = {Xi/i ∈ ē}
With the same notations as before,

L̂p(ŝ) =
1(
n
p

) ∑
e∈ep

[||ŝē||22 −
2

p

∑
i∈e

ŝē(Xi)] (4)

Where sē denotes any estimator built from X ē. Generally, this estimator is computation-time
prohibitive due to the

(
n
p

)
subsamples.

Set p = 1, we have LOO risk estimator,

L̂1(ŝ) =
1

n

n∑
i=1

||ŝ(i)||22 −
2

n

n∑
i=1

ŝ(i)(Xi) (5)

Where s(i) denotes any estimator built from X−i.

Histograms density estimator
Let M be the set of all possible partitions of [0,1] in D intervals. For m ∈ M , m = (Ik)k=1,...,D,
where the intervals Ik are ordered from left to right, and for any k ∈ {1, ..., D}, ωk = |Ik| denotes
the length of Ik. nk =

∑n
i=1 I(x ∈ Ik) The histogram is defined as following:

ŝω(x) =

D∑
k=1

nk
nωk

I(x ∈ Ik) (6)

Kernel density estimator
For any kernel K, h is called the bandwith and let Kh(x) = 1

hK(xh ). The corresponding density
estimator is for any positive h:

ŝh(x) =
1

n

n∑
i=1

Kh(x−Xi) (7)

Projection estimator
Let {φλ}λ∈Λn be a family of functions in L2([0, 1], ν), where ν denotes the Lebesque measure on
[0,1] and Λn is a countable set of indices. For any m ∈Mn, set Λ(m) ⊂ Λn such that {φλ}λ∈Λ(m)

is an orthonormal family of functions. Let Sm denote the linear space of dimension Dm spanned by
{φλ}λ∈Λ(m). We call ŝ a projection estimator of s such that

ŝm =
∑

λ∈Λ(m)

β̂λφλ with β̂λ =
1

n

n∑
i=1

θλ(Zi) (8)

where Z1, ..., Zn denote some observations (density or regression) and θλ is a function independent
from the observations for any λ.
In the density estimation framework, θλ = φλ for every λ and

ŝm =
∑

λ∈Λ(m)

β̂λφλ with β̂λ =
1

n

n∑
i=1

φλ(Zi) (9)

A typical example of projection estimator is histogram for which φλ = I(λ)√
|I(λ)|

where {I(λ)}λ∈Λm

denotes a partition of [0,1] and |I(λ)| represents the length of the interval I(λ).
In the regression setting (for uniformly distributed Xi = i

n ), θλ[(x, y)] = yφλ((x) and

ŝm =
∑

λ∈Λ(m)

β̂λφλ with β̂λ =
1

n

n∑
i=1

Yiφλ(Zi) (10)

2



It is easy to check that every projection estimators ŝm may be written as

∀1 ≤ i ≤ n, ŝm(Zi) =
1

n

n∑
j=1

Hm(Zj , Zi) (11)

where Hm(., .) is a function which may be expressed in terms of the basis vectors. This expression
is also strongly connected to kernel density estimators as well. Indeed, provided K denotes a kernel
and h > 0 a smoothing parameter, we may define

∀1 ≤ i ≤ n, ŝh(Xi) =
1

n

n∑
j=1

Kh(Xj −Xi) (12)

Framework of regression with squared loss
We observe a sample dataD = {(X1, Y1), ..., (Xn, Yn)}, whereXi = (Xi(1), ..., Xi(d)) ∈ Rd and
Yi ∈ R. For simplicity, let Xi(1) = 1. The conditional prediction risk of an estimator m̂ for a new
data pair (X,Y) is

r(m̂) = E[(Y − m̂(X))2|D] =

∫
(y − m̂(x))2dP (x, y) (13)

The prediction risk of m̂ is

R(m̂) = E[(Y − m̂(X))2] = E[r(m̂)] (14)

The true regression function is
m(x) = E[Y |X = x] (15)

linear smoothers
An estimator m̂ of m is a linear smoother if, for each x, there is a vector l(x) = (l1(x), ..., ln(x))T

such that

m̂(x) =

n∑
i=1

li(x)Yi = l(x)TY (16)

Note that in least square linear regression, m̂(x) = xT β̂ where β̂ = xT (XTX)−1XTY = l(x)TY
is a special case of linear smoother.

LOO risk of linear smoother
The LOO risk of regression with squared loss is defined as follows:

R̂(h) =
1

n

n∑
i=1

(Yi − m̂(−i)(Xi))
2 (17)

Where m̂(−i) is the estimator obtained by deleting the data pair (Xi, Yi), that is

m̂(−i) =

n∑
j=1

Yj lj,(−i)(x) (18)

and

lj,(−i)(x) =
lj(x)∑
k 6=i lk(x)

I(j 6= i) (19)

3 Key Results and proofs

Lemma1 for proving Lemma2:
For any i 6= j 6= k ∈ {1, ..., n}, ∑

e∈ep

1(j∈ē) =

(
n− 1

p

)
(20)
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∑
e∈ep

1(i∈e) =

(
n− 1

p− 1

)
(21)

∑
e∈ep

1(j∈ē)1(k∈ē) =

(
n− 2

p

)
(22)

∑
e∈ep

1(i∈e)1(j∈ē)1(k∈ē) =

(
n− 3

p− 1

)
(23)

∑
e∈ep

1(i∈e)1(j∈ē) =

(
n− 2

p− 1

)
(24)

proof sketch∑
e∈ep 1(j∈ē) can be interpreted as the number of subsets of {1, ..., n} of size p (denoted by e)

which do not contain j, since j ∈ ē. Thus it is the number of possible choices of p non-ordered and
different elements among n− 1. Other equailties follow from a similar argument.

Lemma2 for projection estimator theorem of LPO:
Let ŝēm denote a generic projection estimator based on model Sm and computed from training set
X ē, Then

∑
e∈ep

||ŝēm||22 =
1

(n− p)2
[

(
n− 1

p

) n∑
k=1

||Hm(Xk, .)||22+

(
n− 2

p

)∑
k 6=l

< Hm(Xk, .), Hm(Xl, .) >2]

(25)∑
e∈ep

∑
i∈e

ŝēm(Xi) =
1

n− p

(
n− 2

p− 1

)∑
i 6=j

Hm(Xi, Xj) (26)

∑
e∈ep

∑
i∈e

[ŝēm(Xi)]
2 =

1

n− p
[

(
n− 2

p− 1

)∑
i 6=j

[Hm(Xi, Xj)]
2+

(
n− 3

p− 1

) ∑
i 6=j 6=l

Hm(Xk, Xi)Hm(Xl, Xi)]

(27)∑
e∈ep

∑
i∈e

Yiŝ
ē
m(Xi) =

1

n− p

(
n− 2

p− 1

)∑
i 6=j

YiHm(Xi, Xj) (28)

proof sketch
For each e ∈ ep, we have ∀t ∈ [0, 1],

ŝēm(t) =
1

n− p
∑
j∈ē

Hm(Xj , t) =
1

n− p

n∑
j=1

Hm(Xj , t)1(j∈ē) (29)

∑
i∈e

ŝēm(Xi) =
1

n− p

n∑
i=1

∑
j∈ē

Hm(Xj , Xi)1(i∈e)

=
1

n− p
∑
i 6=j

Hm(Xj , Xi)1(i∈e)1(j∈ē)

(30)

Then, this lemma follows from lemma 1.

Proposition 1 for density estimator LPO closed-form risk:
For any density t : [0, 1] → R+, for any m ∈ Mn, let ŝm denote a generic projection estimator
based on model Sm spanned by the orthonormal basis {φλ}λ∈Λ(m)

. Then the L2-loss of projection
density LPO risk estimator is

L̂p(ŝm) =
1

n(n− p)
∑

λ∈Λ(m)

[
∑
j

φ2
λ(Xj)−

n− p+ 1

n− 1

∑
j 6=k

φλ(Xj)φλ(Xk)] (31)
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Besides, let ŝm denote the kernel density estimator based on a symmetric kernel K, with smoothing
parameter m ≥ 0. Then, the L2-loss of kernel density LPO risk estimator is

L̂p(ŝm) =
1

n− p
||Km||22 +

n− p− 1

n(n− 1)(n− p)
∑
k 6=l

K∗m(Xk −Xl)−
2

n(n− 1)

∑
k 6=l

Km(Xk −Xl)

(32)
Where K∗m := (K ∗K)m and ”*” denotes the convolution product.

proof sketch
The LPO estimator with squared loss is

L̂p(ŝm) =

(
n

p

)−1 ∑
e∈ep

||ŝēm||22 −
2

p

(
n

p

)−1 ∑
e∈ep

∑
i∈e

ŝēm(Xi) (33)

Also, for projection density estimator,

Hm(Xi, Xj) =
∑

λ∈Λ(m)

φλ(Xj)φλ(Xi) (34)

Besides, for kernel density estimator,

Hm(Xi, Xj) = Km(Xj −Xi) := K[(Xj −Xi)/m] (35)

Then, the expected result follows from equation 25 and 26 in Lemma2.

Corollary: LPO risk estimators for histograms density estimators
Let ŝm denotes the histogram estimator built from the partition I(m) = (I1, ..., IDm) of [0, 1] in
Dm intervals of length ωk = Ik. For any p ∈ {1, ..., n− 1}

L̂p(ŝm) =
2n− p

(n− 1)(n− p)

Dm∑
k=1

nk
nωk

− n(n− p+ 1)

(n− 1)(n− p)

Dm∑
k=1

1

ωk
(
nk
n

)2 (36)

proof sketch
This result follows from equation 31 by plug in φλ =

1Iλ√
ωλ

Corollary: LOO risk estimators for histograms density estimators
In the case of a regular D-piece histogram(ω = 1

D )

L̂1(ω) =
2n− 1

(n− 1)2ω
− 1

(n− 1)2ω

D∑
k=1

n2
k (37)

proof sketch
This result follows from equation 36 by plug in p = 1

Proposition 2 for regression estimator LPO closed-form risk:
For any observations Z = (X,Y ) and any function t : [0, 1] → R, for any m ∈ Mn, let ŝm denote
a generic projection estimator based on model Sm spanned by the orthonormal basis {φλ}λ∈Λ(m)

.
Then the L2-loss of projection regression LPO risk estimator is

L̂p(ŝm) =
1

n(n− 1)
[

1

n− p
∑
i 6=j

H2
m(Xj , Xi) +

n− p− 1

(n− p)(n− 2)

∑
i6=j 6=k

Hm(Xj , Xi)Hm(Xk, Xi)

− 2
∑
i 6=j

YiHm(Xj , Xi)] +
1

n

n∑
i=1

Y 2
i

(38)

Where Hm(Xj , Xi) =
∑
λ∈Λ(m) Yiφλ(Xj)φλ(Xi)
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proof sketch
The LPO risk estimator can be expressed as the sum of three terms:

L̂p(ŝm) =[
1

p

(
n

p

)−1 ∑
e∈ep

∑
i∈e

Y 2
i ] + [

1

p

(
n

p

)−1 ∑
e∈ep

∑
i∈e

[ŝm(Xi)
2]]− 2[

1

p

(
n

p

)−1 ∑
e∈ep

∑
i∈e

Yiŝm(Xi)]

(39)

With the first term dealt with lemma1 and the remaining terms dealt by equation 27 and 28 in
lemma2, this theorem is proved.

Proposition 3, LOO risk estimator of linear smoother
Let m̂ be a linear smoother. Then the LOO risk R̂(h) can be written as

R̂(h) =
1

n

n∑
i=1

(
Yi − m̂h(Xi)

1− Lii
)2 (40)

where Lii = li(Xi)

proof

m̂(Xi) =

n∑
j=1

LijYj

Set Zj =

{
Yj , if j 6= i

m̂(−i)(Xi) if j = i

m̂(−i)(Xi) = argmin
m

∑
j 6=i

(Yj − m̂(−i)(Xj))
2 = argmin

m

∑
j

(Zi − m̂(−i)(Xj))
2

=> m̂(−i)(Xi) =

n∑
j=1

LijZj

(m̂(Xi)− m̂(−i)(Xi)) =

n∑
j=1

Lij(Yj − Zj) = Lii(Yi −m(−i)(Xi))

=> m̂(−i)(Xi) =
m̂(Xi)− LiiYi

1− Lii
1

n

n∑
i=1

(Yi − m̂(−i)(Xi))
2 =

1

n

n∑
i=1

(Yi −
m̂(Xi)− LiiYi

1− Lii
)2

=
1

n

n∑
i=1

(
Yi − m̂(Xi)

1− Lii
)2

(41)

4 Conclusion

We have investigated and verified that closed-form LPO and LOO are available in density estimation
and regression frameworks with some well-known estimators. This project provides a summary of
the exact closed-form expressions under specific estimators and frameworks.
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