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Abstract

Motivation: Methods for reconstructing developmental trajectories from time-series single-cell

RNA-Seq (scRNA-Seq) data can be largely divided into two categories. The first, often referred to

as pseudotime ordering methods are deterministic and rely on dimensionality reduction followed

by an ordering step. The second learns a probabilistic branching model to represent the develop-

mental process. While both types have been successful, each suffers from shortcomings that can

impact their accuracy.

Results: We developed a new method based on continuous-state HMMs (CSHMMs) for represent-

ing and modeling time-series scRNA-Seq data. We define the CSHMM model and provide efficient

learning and inference algorithms which allow the method to determine both the structure of the

branching process and the assignment of cells to these branches. Analyzing several developmental

single-cell datasets, we show that the CSHMM method accurately infers branching topology and

correctly and continuously assign cells to paths, improving upon prior methods proposed for this

task. Analysis of genes based on the continuous cell assignment identifies known and novel

markers for different cell types.

Availability and implementation: Software and Supporting website: www.andrew.cmu.edu/user/

chiehl1/CSHMM/

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability to profile gene expression and other genomic data in sin-

gle cells have already led to several new findings. Using single-cell

expression data (scRNA-Seq), researchers can better identify cell-

specific pathways and genes which are often missed when profiling

cell mixtures. scRNA-Seq analysis of developmental programs, vari-

ous tissues and perturbations has already identified new cell types,

new pathways and new marker genes for a variety of biological sys-

tems and conditions (Shalek et al., 2013; Trapnell et al., 2014;

Treutlein et al., 2014).

Several scRNA-Seq studies have profiled time-series data, most

notably during development of various organs and systems

(Treutlein et al., 2014, 2016). A key question that emerges in such

studies is the ability to connect different cell types over time.

Unlike experiments that profile bulk samples (or population of

cells), in which a sample at time point tþ1 is assumed to arise

from the sample at time t (Bar-Joseph et al., 2012), in single cell

studies it is not always clear what cell type in time t led to a

cell being profiled in time tþ1. Since scRNA-Seq studies fully

consume the cell (which effectively makes it a snapshot), it is not

possible to trace it over time which make it difficult to connect

progenitor cells to their descendents, or to follow the response of

specific cell types over time. In addition, in many single cell studies

cells are not completely synchronized within a sample and so cells

measured at a specific time point may be more similar to cells at

other time point (in terms of their perceived developmental or
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differentiation time) which may require the reassignment of cells

between the measured time points.

To address these issues, a number of methods, often referred to

as pseudotime inference methods, have been proposed (Qiu et al.,

2017; Rizvi et al., 2017; Setty et al., 2016; Trapnell et al., 2014).

These methods order cells along a transcriptomic trajectory in

embedded space such that cells that are close in that space are also

assumed to be close in terms of their biological states. By tracing

paths and trajectories of pseudotemporally ordered cells, these

methods determine the set of states leading from the starting point

to the (often differentiated) final cell fate. Pseudotime and other

tools developed for the analysis of time-series scRNA-Seq data can

be largely divided based on the method they used (probabilistic or

deterministic) and the representation they provide (continuous

versus discrete cell assignments). Deterministic methods utilize

dimensionality reduction (often to two components) to obtain a

graph representation of all cells in a lower dimension embedding

and then rely on graph analysis (usually an extension or variant of

minimum spanning trees) or other modeling methods [e.g. Gaussian

processes (GP)] to connect cells in order to obtain a continuous tra-

jectory for the cells in the study. Some methods that use variants of

this strategy include DPT (Haghverdi et al., 2016), scTDA (Rizvi

et al., 2017), PCA analysis (Treutlein et al., 2014), Monocle 2

(Trapnell et al., 2014), Wanderlust (Bendall et al., 2014) and

GPLVM (Lönnberg et al., 2017; Reid and Wernisch, 2016). In con-

trast, probabilistic state methods assign cells to a discrete (and often

small) number of states in a probabilistic graphical model and deter-

mine trajectories based on the graph structure. Methods that use

this strategy include SCUBA(Marco et al., 2014) and TASIC (Rashid

et al., 2017). While both types of methods have been successful in

analyzing various types of time-series scRNA-Seq data, they both

suffer from problems that limit their general use. Deterministic

methods often do not take into account noise, which is very preva-

lent in scRNA-Seq data (Buettner et al., 2015; Shapiro et al., 2013).

In addition, by reducing the dimensions to a very small number of

components they effectively ignore much of the profiled data.

Finally, some of these methods cannot infer more than two branches

in the trajectory which is often not enough for developmental and

other studies. Probabilistic methods overcome these issues by intro-

ducing transitions that handle branching and emissions that can

handle noise. However, the resulting graph from these methods

includes only a small number of states which makes it hard to infer

continuous trajectories of genes along the developmental process

and also forces cells that can be pretty distant in the time they repre-

sent to the same state.

Here we present a new method for ordering cells in scRNA-Seq

studies which combines the continuous representation offered by the

deterministic methods and the ability to handle noise provided by

the probabilistic methods. Our algorithm is based on the use of

continuous-state HMMs (CSHMMs) (Ainsleigh, 2001). Unlike

standard HMMs which are defined using a discrete set of states,

CSHMMs can have infinitely many states and so cells can be

assigned to a much more detailed trajectory. We discuss how to for-

mulate the CSHMMs for scRNA-Seq data and how to perform

learning and inference in this model. Once we learn a CSHMM

model, all cells are assigned to specific locations along paths which

allows users to associate cells with specific fates and to reconstruct

continuous developmental trajectories for the genes along each path.

We applied our CSHMM to several scRNA-Seq datasets. As we

show, the method was able to correctly assign cells to paths in order

to reconstruct developmental trajectories for these processes improv-

ing upon the models obtained by both the deterministic and prior

probabilistic models. Using the learned cell assignment, we were

also able to identify several novel genes for the different cell fate

trajectories.

2 Materials and Methods

2.1 Dataset processing
We collected time-series mouse scRNA-Seq data for lung (Treutlein

et al., 2014) and for mouse embryonic fibroblasts (MEFs) re-

programming to neurons (Treutlein et al., 2016). Both datasets were

processed in a similar way to the processing performed in the origin-

al paper: We removed genes with FPKM < 1 in all cells and genes

with zero variance. Next expression values were transformed to log

FPKM. We also analyzed a zebrafish embryogenesis scRNA-Seq

dataset (Farrell et al., 2018). This dataset is log TPM and genes

expressed in less than 5% of cells are removed. The processed mouse

lung data consisted of 152 cells with 15K genes and 3 time points

(E14.5, E16.5, E18.5), the mouse MEF reprogramming data con-

sisted of 252 cells with 12K genes and 4 time points (0, 2, 5,

22 days), the zebrafish data consisted of 38 731 cells with 6K genes

and 12 time points (from 3.3 to 12 h).

2.2 CSHMM model formulation
Figure 1 presents the CSHMM model structure. HMMs define a

transition probability between states and emission probability for

each state. CSHMMs defines the same set of parameters. However,

since they have infinite many states (in our case corresponding to

continuous time), both transition and emission probabilities are a

function of the specific path a state resides on. Split points represent

time points where we allow cells to split into different lineages

and paths are defined as the collection of (infinitely many) states

between two such split events. Note that in our model, we learn the

location of the splits from data and while these are initialized with

the sampling rate (i.e. initially we use the sampled time points to de-

fine the split locations) as we discuss below the model can add splits

between two time points to account for the asynchronous nature of

cells in some studies.

Each cell is assigned to a specific state along one of the paths

which corresponds to both, the time inferred for it by the algorithm

and the cell type it belongs to. In addition to the state assignment

Fig. 1. CSHMM model structure and parameters. Each path represents a set

of infinite states parameterized by the path number and the location along

the path. For each such state, we define an emission probability and a transi-

tion probability to all other states in the model. Emission probability for a

gene along a path is a function of the location of the state and a gene-specific

parameter k, which controls the rate of change of its expression along the

path. Split nodes are locations where paths split and are associated with a

branch probability. Each cell is assigned to a state in the model. See text for

complete details
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and transitions at split nodes, the model also encodes emission prob-

abilities. Following prior work on modeling expression with HMMs

(Lin et al., 2008), we use a Gaussian emission model and assume

independence for gene-specific expression levels conditioned on the

state. To define an emission probability for a state, we use the rela-

tive location of a state along a specific path. We define a state by the

path number and the relative time for this path. We denote by sp;t

the state representing time 0 � t � 1 on path pðDa ! DbÞ, where

a, b are the indices of the split nodes. Let i be a cell assigned to sp;t.

We denote by xi
j the expression of gene j. The emission probability

for gene j in cell i assigned to state sp;t is thus assumed to be

xi
j � Nðlsp;t

;r2
j Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

j

q exp �
ðxi

j � lsp;t
Þ2

2r2
j

 !
:

Where

lsp;t
¼ gaj expð�Kp;jtÞ þ gbjð1� expð�Kp;jtÞÞ

¼ gbj þ ðgaj � gbjÞ expð�Kp;jtÞ
(1)

r2
j is the variance of gene j (2)

Here, gaj is the mean expression for gene j at split node a. We as-

sume a continuous change in expression for a subset of the genes

along a path. However, we want to learn the specific shape of the

change curve and so we add a parameter Kp;j which controls the rate

of change for gene j on path p, allowing different genes to change at

different rates. Using these notations, we next define the following

parameters that are required to specify a CSHMM:

k ¼ ðV; p; S;A;EÞ, where all the symbol definitions are presented in

Table 1.

Each cell i is associated with an expression vector Xi 2 RG, and

a (hidden) state yi ¼ sp;t. The observation alphabet V � RG, is thus

a real-value vector with dimension jGj, where G are the set of genes

in our input set. We associate a root state s0;0 with each HMM with

initial probability of 1 (pp;t ¼ 1 for state s0;0 and pp;t ¼ 0 for all

other states). The transition probability Aðsp1 ;t1
; sp2 ;t2

Þ for each pair

of states sp1 ;t1
; sp2 ;t2

2 S is defined as follows:

Aðsp1 ;t1
; sp2 ;t2

Þ ¼ 0; if sp2 ;t2
is not reachable from sp1 ;t1

(3)

Aðsp1 ;t1
; sp2 ;t2

Þ ¼ 1=Zp1 ;t1
; if p2 ¼ p1 and t2 > t1 (4)

Aðsp1 ;t1
;sp2 ;t2

Þ¼
Y

q2branchprobability
fromp1 top2

q

Zp1 ;t1

; if p2 6¼p1;p2 reachable from p1

(5)

Where Zp1 ;t1
is a normalizing factor for the transition probability

going out of state sp1 ;t1
, that is

Zp1 ;t1
¼ 1� t1 þ

X
path p

reachable from p1

Y
q 2 branch probability

from p1 to p

q: (6)

The branch probability is defined on split nodes as shown in

Figure 1. The second term in Equation (6) is the product of all

branch probabilities of the paths from p1 to p. For example, assume

that there are two paths in between states p1 and p: pa and pb. Then

the second term will be Bp1 ;pa
� Bpa ;pb

� Bpb ;p, where Bpa ;pb
refers to

the branch probability for cells to transition from pa to pb. The use

of branching probabilities leads to lower likelihood for cell assign-

ments to later (more specific) paths in the branching tree. This is

similar to prior probabilistic methods for reconstructing branching

trajectories (Rashid et al., 2017). The idea here is that earlier stages

are often less specific [higher entropy (Teschendorff and Enver,

2017)], while later stages (representing specific fates) have a tighter

expression profile. Thus, cells that represent specific cell types will

still be assigned to their correct (late) stage based on their expression

profile while noisier cells would be assigned to the earlier stages.

To see that this is indeed a continuous-state hidden Markov

model (CSHMM), we note that the model contains a continuous set

of states with well-defined emission and transition probabilities

(transition probabilities integrate to 1 for each state). Transitions

and emissions depend only on the current state. Each observation is

assumed to have been emitted from one of the states in the model.

Since we cannot assume that the time stamp associated with

each cell is the correct time (to account for asynchrony), we need to

determine cell assignments. In addition, we do not know the struc-

ture of the model in advance. We thus developed an expectation

maximization (EM) algorithm which can jointly infer the model

structure, parameters and cell assignments.

2.3 Likelihood function for the CSHMM model
Since CSHMMs are probabilistic models, to determine the optimal

structure and parameters, we first need to define the likelihood func-

tion that the model is trying to optimize. Denote by Xi the expres-

sion profile of cell i. Let si
p;t denote the (unobserved) state which

‘emitted’ the expression of cell i (i.e. the state to which cell i is

assigned to). Given an expression input matrix X ¼ fX1; . . . ;XNg
and hidden variables Y ¼ fy1; . . . ; yNÞg where yi ¼ si

p;t is the state

for cell i, we can write the log likelihood as follows:

lðX;YjkÞ ¼ log PðX;YjkÞ ¼
XN
i¼1

log PðXi; yijkÞ (7)

Which can be can further decomposed using the parameters

described above as:

PðXi; yijkÞ ¼ PðXi; si
p;tjkÞ ¼ PðXijsi

p;t; kÞPðsi
p;tjsi

p; kÞPðsi
pjkÞ (8)

Pðsi
pjkÞ ¼

Y
q 2 branch probability

from root to p

q ðthe branch probabilityÞ (9)

Pðsi
p;tjsi

p; kÞ ¼ 1 ðassume uniformly random on every tÞ (10)

Table 1. The parameter definition for CSHMM

Symbol Definition

V The observation alphabet � RG

p The initial probability for each state

S The set of states

B The branch probability � RP�P

A The transition probability defined on any pair of states

and branch probability B

E ¼ ðK; g;RÞ The parameters associated with emission probability

for a given state

K K ¼ fK1; . . . ;KjPjg � RG

g g ¼ fg1; . . . ; gjDjg � RG

R � RG�G The covariance matrix with off-diagonal element

to be 0 and diagonal term r2
j

D The set of split points

P The set of paths

G The number of genes (dimension of data)
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PðXijsi
p;t; kÞ ¼

YG
j¼1

Pðxi
jjsi

p;t; kÞ ðthe emission probabilityÞ (11)

¼
YG
j¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

j

q exp �
ðxi

j � lsp;t
Þ2

2r2
j

 !
(12)

¼
YG
j¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

j

q exp �
ðxi

j � gbj � ðgaj � gbjÞ expð�Kp;jtÞÞ2

2r2
j

 !
(13)

Thus, the complete log likelihood for N input cells is:

lðX;YjkÞ ¼
XN
i¼1

�XG
j¼1

log Pðxi
jjsi

p;t; kÞ þ log Pðsi
p;tjkÞ

�
(14)

Note that in Equation (10), Pðsi
p;tjsi

p; kÞ is a probability density

function over path p with domain 0 � t � 1. The normalization

performed in Equations (3)–(5) guarantees that all transition proba-

bilities for a state integrates to 1.

2.3.1 Constraining expression changes along a path

Similar to prior pseudotime ordering methods, our algorithm relies

on the assumption that cells that are close to each other along the

developmental trajectory have a similar (though not identical) ex-

pression profile. This implies that for most genes, we would expect

to see relatively small changes in expression whereas for a few genes

(which may define the changes that the cell undergoes during the

process) we expect larger changes. Thus, we expect differences be-

tween the expression profiles of consecutive split nodes to be sparse.

To encode our assumption about the sparseness of the difference

vector Dg, we use L1 regularization on the difference. Minimizing

the L1 regularization term for negative log-likelihood (NLL) is

equivalent to maximizing the complete likelihood multiplied by the

Laplace prior distribution (Tibshirani, 1996). The Laplace prior dis-

tribution on Dg and parameter h is:

f ðDg; hÞ ¼
YG
i¼1

1

2h
exp � jðDgÞij

h

� �
(15)

where h>0 is the scale of the distribution.Adding this regulariza-

tion, the log likelihood function changes to:

lðkjX;YÞ ¼ log PðX;YjkÞ þ logðsparse probabilityÞ (16)

¼
XN
i¼1

log PðXi; yijkÞ þ
X

Dg for each path

log
YG
j¼1

1

2h
exp �

jðDgÞjj
h

� �0
@

1
A

(17)

¼
XN
i¼1

XG
j¼1

log Pðxi
jjsi

p;t; kÞ þ
XN
i¼1

log Pðsi
p;tjkÞ

þ
X

Dg for each path

XG
j¼1

� jðDgÞij
h

� �
(18)

2.4 Model initialization
For model initialization, we slightly modify the strategy used in

Ding et al. (2018). We construct an initial cell differentiation tree by

clustering the cells, and then compute the distance of each of the

clusters to the root of the tree (cells in first time point). Using this

distance function, clusters are assigned to different levels in the tree

(where clusters in each level are significantly more distant from the

root than the preceding level). Finally, we connect each cluster (ex-

cept the root cluster) at level i to a parent cluster in level i � 1 by

selecting the closest cluster, in expression space, in level i � 1. See

Supplementary Methods for complete details. Following this initial-

ization step, each cluster is associated with a path (the edge connect-

ing it to its parent). Finally, cells in each cluster are randomly

assigned along the path for that cluster. Split nodes are defined for

cases where two or more clusters at a specific level connect to the

same cluster at the level above them.

2.5 Learning and inference (EM algorithm)
We use an EM algorithm to learn the parameters of the model and

to infer new cell assignment. Given initial cell assignments, the

branching probabilities can be easily inferred using standard

maximum likelihood estimation (Supplementary Methods). In the

Supplementary Methods, we discuss how to learn the emission prob-

ability parameters which, due to the K parameter requires an opti-

mization of a nonconvex target function. As for cell assignment,

given model parameters we assign each cell to a state sp;t which max-

imizes the log-likelihood of the resulting model. Again, since the

likelihood function is not concave, determining an optimal value t

for a cell assigned to path p is challenging. In the Supplementary

Methods, we discussed a sampling strategy for solving this problem

which we use to assign cells.

2.6 Modifying the model structure
So far we assumed a fixed model structure. However, as part of the

EM algorithm, cells are re-assigned and so some paths that started

with several cells may become empty while for others, we may need

to reassign their parents as their expression parameters change. To

allow for structure changes during the learning process we do the

following. Following each EM iteration, we test for two things: first,

if a path has less than three cells assigned to it, we remove it from

the model and connect any following paths to the path parents. In

addition, we allow the algorithm to connect split nodes to different

parents in the level above them. For this, we try to connect every

path at a certain level to all paths at the prior level it was not con-

nected to. For each such new connection, we re-compute the log-

likelihood for all cells assigned on the path. If the log likelihood

increases for this set of cells, we keep the new relationship, other-

wise we do not. This is repeated for every possible connection result-

ing in the structure that maximizes the likelihood for the current

assignments we have.

2.7 Analysis of gene expression for specific cell fates
To determine the set of genes associated which specific fates (a set of

paths from root to a leaf in the model), we calculate the Spearman

correlation between their expression values and the ordering of the

cells assigned to the set of paths leading to a specific fate. We use

gprofiler (Reimand et al., 2016) for GO of the top 300 genes. For

plotting gene expression we use a 4 degree polynomial to interpolate

expressions in the different cells assigned to a trajectory. For each

leaf node, we scale all cell assignments between the root and the

node to be between 0 and 1 so that all expression profiles are plotted

with the same length.

3 Results

To test the CSHMM model and to compare the results to prior

pseudo-time ordering methods, we used several time-series scRNA-

Seq datasets. The first dataset is for mouse lung development
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(Treutlein et al., 2014). After preprocessing (Materials and

Methods), the lung dataset consisted of 152 cells with 15K genes,

measured at 3 time points (14.5, 16.5, 18.5 days). Cells at time point

18.5 are labeled with one of the following cell types: alveolar type 1

(AT1), alveolar type 2 (AT2), bipotential progenitor (BP), Clara and

Ciliated. Cells at earlier time points were not labeled in the original

paper. We label these cells as NA_14 or NA_16 based on their time

point. The second dataset profiled the process in which MEFs are

induced to become neuronal (iN) cells (Treutlein et al., 2016) This

data contained four time points (0, 2, 5, 22 days) starting with MEF

cells at day 0. Using known markers, Day 22 cells were labeled in

the original paper with one of the following cell types: Neuron,

Myocyte, Fibroblast. For the rest of the cells, we used the assign-

ments in the original papers for the plots, though they were not used

by the CSHMM algorithm. In addition to these two well-annotated,

but rather small, datasets we also tested the CSHMM on a much

larger zebrafish embryogenesis dataset (Farrell et al., 2018). This

dataset has close to 40 000 cells profiled at 12 time points (from 3.3

to 12 h). Cells in the last time point (only) were labeled with one of

25 cell types based on marker genes.

3.1 Application of CSHMM to lung developmental data
Figure 2 presents the resulting CSHMM branching model for the

lung development data and the distribution of cells along its paths

(based on the state assigned by the model). As can be seen, the

CSHMM method was able to assign different cell types to different

paths correctly, for example ciliated (path 2), Clara (path 3), AT1

(path 7) and AT2 (path 5) are all correctly associated with a termin-

al path. The bi-progenitor (BP) cells (path 4) are mostly assigned to

the predecessors of the AT1 and AT2 paths in agreement with prior

observations (Treutlein et al., 2014). This highlights the ability of

the method to assign cells measured at the same time point (E18.5)

to different times in the model. The ability to correctly reconstruct

the branching trajectory for such in vivo data is not trivial. As we

show in Figure 3a–d, dimensionality reduction-based methods that

have been used in the past for pseudo time ordering, including PCA

(Treutlein et al., 2014), TSNE (for which we used the optimal

parameters, Supplementary Methods), GPLVM following PCA

(Campbell and Yau, 2016) and Monocle 2[which performs min-

imum spanning tree analysis on a reduced dimension of the data

(Qiu et al., 2017; Trapnell et al., 2014)] were unable to fully recon-

struct the known developmental trajectory for this data.

PCA is able to identify clusters for different cell types but the

projection of the reduced dimensional cells cannot reconstruct the

known trajectory over time. Similarly, TSNE was also unable to sep-

arate some cell types for the later time point and was mixing E14.5

and E16.5 cells. GPLVM correctly orders E14.5 and E16.5 cells,

however, it is unable to determine branching models for the different

cells types in E18.5 and is also unable to determine the relative ear-

lier ordering of the BP cells. Monocle 2 was able to generate trajec-

tories, associating cells with specific time points, however, for this

data it finds only 1 split point and was also unable to correctly sep-

arate the E18.5 cells according to their types. We also tried to com-

pare to scTDA (Rizvi et al., 2017), however that method requires a

commercial software from Ayasdi Inc. that we did not have access

to. We have also compared the results to prior probabilistic methods

that use a discrete set of states (Rashid et al., 2017). For this we

have re-run the CSHMM algorithm but this time allowing cells to

be assigned only to the endpoints of paths themselves and not to

intermediate points. Results are presented in Supplementary Figure

S1. As can be seen, although the discrete version leads to good result

in terms of cell assignments, there are some differences. Specifically,

BP cells are mostly assigned to terminal paths in these models, rather

than intermediate paths. Furthermore, as we show below, the

Fig. 2. CSHMM model structure and continuous cell assignment for the lung

developmental dataset. D nodes are split nodes and P edges are paths as

shown in Figure 1. Each small circle is a cell assigned to a state on the path.

The bigger the circle the more cells are assigned to this state. Cells are shaded

based on the cell type/time point assigned to them in the original paper

Fig. 3. Analysis of lung development and MEF reprogramming data by prior methods. (a) PCA, (b) TSNE, (c) GPLVM and (d) Monocle 2. Top row presents results

for the lung dataset and the bottom for the neural developmental dataset. Shades correspond to cell fate assignments in the original papers
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CSHMM model is better at identifying cell type-specific genes when

compared to prior probabilistic discrete models.

3.1.1 Identifying cell type-specific genes in the lung dataset

The continuous nature of the CSHMM allows us to reconstruct the

full gene expression trajectories for each path/cell type (ending at a

leaf in our model). For this we use the ordering of cells from root to

leaf for each of the leaves. To overcome noise in individual cell

measurements, we fit a continuous function (a polynomial of degree

4) to the set of values for each gene and plot the resulting curve. We

then use these curves to search for genes that are specifically corre-

lated with a leaf (cell type, Materials and Methods). In addition, we

can compare trajectories for genes between two leafs to identify

genes that are uniquely associated with one cell type. To illustrate

the advantages of such analysis, we have plotted in Figure 4a the tra-

jectories of some of the known markers for the cell types in the data

and additional genes (Fig. 4b) that, while not currently known as

markers or cell type specific, are expressed in a similar manner to

known markers and so are predicted to be novel markers for specific

cell types. For example, Aqp5’s expression is high for the AT1 path,

but is strongly decreasing in the AT2 path after the split between

these two paths. For the novel markers, Bc051019 displays very

similar expression to the known cillated marker Foxj1. An inde-

pendent study profiling scRNA-Seq of lung epithelial cells (Du et al.,

2015) has also identified it as a ciliated marker. See Supplementary

Table S1 for a full list of genes that are significantly associated with

each pair of paths. The ability to reconstruct the full trajectory of

the genes along the paths based on the continuous state assignments

is also an advantage of the CSHMM compared to prior methods. As

we show in Figure 4c, for several genes the trajectory assigned by

the CSHMM model is more accurate (based on known biology)

than their trajectory in a discrete HMM model. For example, Etv5

and Soat1 are two AT1/AT2 markers found by CSHMM which are

not identified by a regular HMM. Recent studies suggest that Etv5

is essential for the maintenance of AT2 cells (Zhang et al., 2017),

and Soat1 is expressed in AT2 cells (Gutierrez et al., 2016). We have

also performed GO analysis on the set of genes that are identified

for each leaf path (see supporting website). Several of the functions

identified agree with known functions for the terminal paths. For ex-

ample, the most significant GO category for genes correlated with

path 2 the cillated path was cilium assembly (P-value ¼ 1e-14)

which is indeed the major function of cillated cells. Similarly, epithe-

lium development was one of the top categories for path 3 Clara

path (P-value ¼ 4e-6). For path 7 (AT1 cells) the top categories were

related to extracellular matrix (P-value ¼ 3e-9), which is known to

be associated with the development of this cell type (Olsen et al.,

2005).

3.2 Application of CSHMM to neural developmental

data
We have also analyzed a slightly more complicated MEF cell differ-

entiation dataset (Treutlein et al., 2016). The resulting CSHMM

and cell assignments are presented in Figure 5. As can be seen, simi-

lar to the lung data, for this data the assignment of cells to paths

Fig. 4. Reconstructed gene expression profiles for lung and neural development data. Each figure plots the expression profile of a gene along the different paths

in the corresponding model. Each image includes the gene name and the cell type it was assigned to by the model (AT1, AT2, cillated and Clara from the lung

model and Neuron from the neuron model). (Top row) Known markers for the different cell types. (Second row) Novel markers not identified in the original

papers found by the CSHMM assignments. (Third and fourth rows) Comparison of reconstructed profiles using the CSHMM (top) and discrete HMM (bottom).

Several genes have a unique path profile using the CSHMM but did not display such profile when using the discrete model
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generally agrees with their known function. For example, the 0-1-2-

6-8 set of paths lead from the embryonic MEF cells (day 0) to

d2_intermediate, then d5_intermediate and finally to Neuron cells

(day 22). In contrast, paths 0–1–3, while following the initial set of

cells up to day 2, leads to a different outcome by day 5 (the

d5_failedReprog fate). Other trajectories are likely representing

the fact that cells are unsynchronized. For example, the 0–1–5–7

paths represent a slightly less mature set of cells along a reasonable

trajectory (embryonic—d2_intermediate—d2_induced- d5_earlyN).

Once again, most prior methods for the representation and analysis

of time series scRNA-Seq data are unable to accurately represent

this branching process (Fig. 3a–d). Monocle 2 while doing a good

job at identifying the major branching between failed and neuron

cells, fails to separate the d5_earlyN and d5_failedReprog which are

assigned to different paths in our model. Similarly, PCA and

GPLVM do not clearly identify the trajectories and tend to mix

the successful and unsuccessful differentiated cells. TSNE was also

unable to clearly identify the trajectory from d2 and d5 to neurons.

We also ran a discrete version of the CSHMM algorithm

(Supplementary Fig. S2). Similar to the results for the lung develop-

mental data, the discrete model largely agrees with the continuous

one in terms of the overall topology. However, they differ in some

of the cell assignments (e.g. the discrete model assigns some of the

later d2_induced cells to path 0) and, as we show below it is also

less able to identify cell type specific genes.

3.2.1 Identifying genes activated during neural cell development

Several known and novel genes can be identified using the continu-

ous cell assignments (Fig. 4a–c). For example, Insm1 and Myt1l

were identified in the original paper as known neuron markers and

their CSHMM reconstructed trajectories agree with such roles.

Several other genes not identified in the original paper appear to be

highly correlated with successful differentiation. For example,

Ngfrap1 (Bex3, Fig. 4b) has been identified previously as contribu-

ting to nerve growth (Calvo et al., 2015). Similarly, prior studies

have shown that Mtmr7 is highly expressed in the brain (Mochizuki

and Majerus, 2003). Other genes identified highlight the difference

between the discrete and continuous models (Fig. 4c and

Supplementary Results). We also analyzed the top GO categories

for the set of genes associated with specific fates. Enriched GO cate-

gories for genes correlated with each fate agrees well with known

functions. For example, for the neuron path (path 8) the top catego-

ries are ‘neuron part’ (P-value 1e-29) and ‘synapse’ (P-value 1e-22).

For the path that includes neural progenitors (earlyN, path 7) we see

an enrichment for ‘nervous system development’ (P-value 5e-14) as

well as for several categories and TFs related to cell proliferation

(including E2F with a P-value of 3e-22). In sharp contrast, the

‘failed reprogramming’ path (path 4) is not enriched for any neural

activity and is instead enriched for various extracellular matrix cate-

gories (P-value 1e-20). See supporting website for the complete list

of enriched categories.

3.3 Scalability and robustness of the CSHMM model
The datasets discussed so far include hundreds of cells with relative-

ly high coverage. Some of the recent scRNA-Seq studies profile a

higher number of cells (thousands) though usually with lower cover-

age. To test the ability of the method to scale to larger number of

cells, we used both simulated and additional data. For simulated

data we re-run the analysis discussed above by replicating each of

the 152 lung cells 100 times and adding 20% random dropout

to the genes in each replicate (generating a total of 15K expression

profiles). For the CSHMM learning and inference, we used the top

1000 most variable genes and tested two versions of search for cell

assignment and K, either using 10 or 100 values (which is what we

used for the smaller dataset). For the 10 values variant, running on a

desktop with 4 threads takes roughly 40 min to perform one iter-

ation of the EM algorithm and since we usually require less than 10

iterations, the total run time is still less than 7 h even for this dataset.

For the 100 values variant the total run time is 15 h. The resulting

models are presented in Supplementary Figure S3 (10 values) and S4

(100 values). As can be seen, even when using more than 15 000

cells, both models reconstruct all the major paths that were recov-

ered in the original (152 cells) lung model. In addition to testing

the impact of the number of cells, and different values for the hyper-

parameter representing the time points in each path, we also used

the simulated data to test the impact of different choices for another

hyper-parameter of our model, kg ¼ 1
h which controls the L1 penalty

used to select genes for the different paths. As we show

(Supplementary Section 1.6), we do not observe a large impact on

the resulting model for a set of reasonable values for this parameter.

In addition to using simulated data, we also tested the CHMM

on the 40K cells zebrafish dataset mentioned above. Unlike the two

datasets discussed above much less is known about the specific dif-

ferentiation pathways for several of the last time point cell types.

CSHMM analysis of this dataset required only 2 iterations and took

33 h per iteration. Results are presented in Figure 6. To determine

the success of the assignments focused on the leafs in the model

(corresponding to the annotated cell types in the original paper). We

calculated the adjusted random index (ARI) agreement between

these two sets. We found that the ARI achieved by the CSHMM

assignments is significantly better when compared to 1000 random-

ization tests for the cells (P < 10�10

based on randomization tests, Supplementary Fig. S23).

Thus, the CSHMM method can scale to larger datasets with tens

of thousands of cells. The time complexity for CSHMM is

Fig. 5. The CSHMM model structure and continuous cell assignment for the

MEF reprogramming dataset. Notations, symbols and Shades are similar to

the ones discussed for Figure 1

Fig. 6. The CSHMM model structure and continuous cell assignment for

zebrafish embryogenesis dataset. Notations, symbols and Shades are similar

to the ones discussed for Figure 1. Note that the leaf paths of six-somite stage

(time point 12.0) are labeled with one or more labels based on dominating

cell types
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OðN � P �G � SÞ, where N is the number of cells, P is the number of

paths (edges), G is the number of genes, S is the number of sampled

points for cell assignments and for learning K. Note that the com-

plexity of previous discrete probabilistic methods (e.g. SCDIFF

[Ding et al., 2018]) is OðN � P �GÞ, so the key increase here refers

to the need to sample from a much larger set of possible states. Users

can reduce the number of genes, or reduce number of sampled

points, or simplify the initial tree structure with fewer edges to re-

duce the running time of CSHMM.

For how we determine the number of iteration needed for each

dataset based on the change of cell assignment, please see

Supplementary Section 2.2.

Another issue that can impact the analysis of scRNA-Seq data is

dropout. Due to the lower quantity of RNA obtained from single

cells, and the amplification steps required, several genes with low

transcript numbers may appear to have 0 transcripts in scRNA-Seq

data (Kharchenko et al., 2014). As we discuss in Supplementary

Results, we performed extensive analysis of dropout impact on the

CSHMM method. We observe that for rates which increase dropout

by 5–20% results stay largely the same. Beyond 20% additional

dropouts, we observe a larger impact in which Clara and AT2 cells

are merged in a single path though AT1 and AT2 cells are still sepa-

rated and the initial parts of the model are also correct even for

40% additional dropouts.

To test how much the learning can correct errors made in the ini-

tial clustering based assignment, we create additional clusters as

noise and attach the noise clusters to the original model as a differ-

ent initialization profile. To create additional clusters, for each ter-

minal path with more than five cells (P3, P5, P6, P7), we randomly

sampled 20% of the cells to construct a new paths (P8, P9, P10,

P11) and attached this new path to one of the original paths at ran-

dom. Supplementary Figures S13 and S27 present the original model

and the model with the additional 4 clusters. The result after train-

ing with iteration 1–4 is shown in Supplementary Figures S28–S31.

As can be seen, while the model very quickly trims most of the dupli-

cate clusters (three of the four are removed in the first iteration) cells

continue to be re-assigned for four iterations until the model con-

verges. The only added path that is not removed (and appears in the

final model) is P11, which was initially connected after the path

with mostly the same cell types (AT1). While the learning algorithm

did not remove this path, it used it to further refine the ordering and

assignment of cells which, as can be seen, changes between the itera-

tions. Thus, we conclude that while the initial assignments play an

important role, the method is able to correct errors introduced dur-

ing this phase as part of the CSHMM learning procedure.

4 Discussion and future work

Both major strategies for modeling developmental trajectories for

time-series scRNA-Seq data have advantages and disadvantages.

Pseudotime ordering allows for continuous assignment of cells and

the reconstruction of complete expression trajectories. However,

these methods often do not take noise into account and the ordering

is based on a very limited set of values for each cell. In contrast,

probabilistic methods handle noise and the complete set of genes

well, but do not provide a continuous representation for the expres-

sion profiles.

Here we show that CSHMMs can provide a solution for both

problems. On the one hand, it is a probabilistic method and so can

accommodate noise and missing values while on the other hand, it

provides continuous assignment of cells to paths. We formally

defined the CSHMM and discussed methods for learning and infer-

ence in such model. We applied our methods to simulated and real

scRNA-Seq data. Analysis of the models constructed by the

CSHMM method shows that it can accurately reconstruct the

branching model for these differentiation processes, correctly assigns

cells to the different paths and fates and reconstructs expression tra-

jectories that identified known and novel marker for the different

cell types.

While it is impossible to say if the continuous cell assignments

orderings determined by the our model are correct (since we do not

know the ground truth), a possible way to evaluate the accuracy of

these assignments is to look at the resulting gene trajectories. Given

a specific ordering, by any method, we can plot the resulting expres-

sion profiles for genes in these cells. This can be used to both, iden-

tify genes that are in agreement with a specific path in the model

and to compare the ordering with orderings obtained by other meth-

ods. As we have shown in Figure 4, genes identified by the CSHMM

ordering include several of the known markers for specific cell types,

improving upon prior methods. This result provides some support to

the accuracy of the cell assignment to paths. We also try to validate

our cell orderings based on Spearman correlation between the

pseudo time and sampled time for each full path (from P0 to all leaf

paths). We found that for all three datasets (lung, neuron, zebrafish),

the correlation shows a strong agreement. See Supplementary

Section 2.3 for full results.

The ability of the CSHMM method to handle noise would be

even more important for more recent studies that profile a much

larger set of cells with less coverage (and so, with higher noise). As

we have shown, CSHMMs can scale to model such data. While

these initial results are encouraging, in the future we would like to

further improve the efficiency of the learning algorithm so that it

can scale to using more genes even with higher cell numbers (e.g. by

performing sampling on the set of cells used in each EM iteration).

We would also like to test the ability to incorporate other types of

data, including regulatory information, to aid in improving the

model learning and cell assignment.

Software implementing the CSHMM method as well as a

README file and an example input are available from the support-

ing website (http://www.andrew.cmu.edu/user/chiehl1/CSHMM/).
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