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INTRODUCTION

Reconstructing cell lineages that lead to the formation of tissues and organs
is of crucial importance in developmental biology. Recent studies combine
two novel technologies, single-cell RNA-sequencing and CRISPR-Cas9
barcode editing for elucidating developmental lineages at the whole
organism level. These studies raise several computational challenges.

• lineages are reconstructed based on noisy and often saturated random
mutation data using Maximum Parsimony (multiple optimal trees)

• resulting lineage tree sometimes fails to separate different types of cells
• due to the randomness of the mutations, lineages from multiple

experiments cannot be combined to reconstruct a consensus lineage
tree

To address these issues we developed a novel method, LinTIMaT
• reconstructs cell lineages using a maximum-likelihood framework by

integrating mutation and expression data
• enables the integration of different individual lineages for the

reconstruction of a consensus lineage tree

METHODS

LinTIMaT reconstructs the lineage tree by maximizing a log-likelihood 
function that accounts for both mutations and expression data. 
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See Supplementary methods for discussion on how the prior is set for this model.

Combined likelihood

For a given lineage tree, the joint log-likelihood (LT ) function for the mutation and expression data

is a weighted sum given by

LT (T ) = !1 logLM (T ) + !2 logLE(T ) (13)

The values of !1 and !2 are chosen so that the values of the two likelihood components stay in the

same range. In our experiments, we have used !1 = 50 and !2 = 1 (see Supplementary Fig. S10).

Search algorithm for inferring lineage tree

Searching for the optimal tree under a maximum-likelihood framework like ours is a NP hard

problem (39). We have thus developed a heuristic search algorithm which stochastically explores

the space of lineage trees. The search algorithm consists of several stages as described below.

1. In the first step, we only focus on the barcodes and search for top scoring solutions. The

search process starts from a random tree topology built on B leaves corresponding to B

unique barcodes. In searching the barcode lineage tree, we employ the mutation likelihood

function. In each iteration, a new barcode lineage tree, T
0
B is proposed from the current tree

TB as we discuss below. If the proposed tree results in a higher likelihood, it is accepted,

otherwise rejected. Instead of storing a single solution, we keep several of top scoring barcode

lineage trees.
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2. Next, we utilize the expression data. As mentioned above, a barcode can be shared between

16

likelihood (L l
g) is calculated based on only the first hypothesis

L
l
g = P (Y l

g|H
l
1 ). (12)

See Supplementary methods for discussion on how the prior is set for this model.

Combined likelihood

For a given lineage tree, the joint log-likelihood (LT ) function for the mutation and expression data

is a weighted sum given by

LT (T ) = !1 logLM (T ) + !2 logLE(T ) (13)

The values of !1 and !2 are chosen so that the values of the two likelihood components stay in the

same range. In our experiments, we have used !1 = 50 and !2 = 1 (see Supplementary Fig. S10).

Search algorithm for inferring lineage tree

Searching for the optimal tree under a maximum-likelihood framework like ours is a NP hard

problem (39). We have thus developed a heuristic search algorithm which stochastically explores

the space of lineage trees. The search algorithm consists of several stages as described below.

1. In the first step, we only focus on the barcodes and search for top scoring solutions. The

search process starts from a random tree topology built on B leaves corresponding to B

unique barcodes. In searching the barcode lineage tree, we employ the mutation likelihood

function. In each iteration, a new barcode lineage tree, T
0
B is proposed from the current tree

TB as we discuss below. If the proposed tree results in a higher likelihood, it is accepted,

otherwise rejected. Instead of storing a single solution, we keep several of top scoring barcode

lineage trees.

T
[1]
B ,T [2]

B , . . . ,T [t]
B = argmax

TB

LM (TB) = argmax
TB

P (EB⇥S |TB,A) (14)

2. Next, we utilize the expression data. As mentioned above, a barcode can be shared between

16

likelihood (L l
g) is calculated based on only the first hypothesis

L
l
g = P (Y l

g|H
l
1 ). (12)

See Supplementary methods for discussion on how the prior is set for this model.

Combined likelihood

For a given lineage tree, the joint log-likelihood (LT ) function for the mutation and expression data

is a weighted sum given by

LT (T ) = !1 logLM (T ) + !2 logLE(T ) (13)

The values of !1 and !2 are chosen so that the values of the two likelihood components stay in the

same range. In our experiments, we have used !1 = 50 and !2 = 1 (see Supplementary Fig. S10).

Search algorithm for inferring lineage tree

Searching for the optimal tree under a maximum-likelihood framework like ours is a NP hard

problem (39). We have thus developed a heuristic search algorithm which stochastically explores

the space of lineage trees. The search algorithm consists of several stages as described below.

1. In the first step, we only focus on the barcodes and search for top scoring solutions. The

search process starts from a random tree topology built on B leaves corresponding to B

unique barcodes. In searching the barcode lineage tree, we employ the mutation likelihood

function. In each iteration, a new barcode lineage tree, T
0
B is proposed from the current tree

TB as we discuss below. If the proposed tree results in a higher likelihood, it is accepted,

otherwise rejected. Instead of storing a single solution, we keep several of top scoring barcode

lineage trees.

T
[1]
B ,T [2]

B , . . . ,T [t]
B = argmax

TB

LM (TB) = argmax
TB

P (EB⇥S |TB,A) (14)

2. Next, we utilize the expression data. As mentioned above, a barcode can be shared between

16

Mutation Likelihood        : By imposing a Camin-Sokal parsimony criterion for 
each synthetic marker (s), we first use Fitch’s algorithm to assign ancestral 
states      for each marker to each internal node 𝑣 (with children 𝑢 and 𝑤) of 
the tree satisfying maximum parsimony. 

(LM ) of the cell lineage tree is then given by

LM (T ) = P (E|T ,A) =
SY

s=1

P (E⇤s|T ,As) (1)

where E⇤s is the observed data for marker s which is a vector corresponding to N values for N cells.

As denotes the parsimonious assignment of ancestral states for all internal nodes for marker s.

For an internal node v with children u and w, Lv
s(A) denotes the partial conditional likelihood

for marker s defined by

Lv
s(A

v
s = x) = P (Ev

s |T ,Av
s = x) (2)

where Ev
s denotes the restriction of observed data for marker s, E⇤s to the descendants of node

v subject to the condition that Av
s = x is the ancestral state for marker s assigned by Fitch’s

algorithm, x 2 {0, 1}. Lv
s gives the likelihood for marker s for the subtree rooted at node v, given

the assignment of ancestral states by Fitch’s algorithm.

The likelihood for the full observed data E⇤s for marker s is given by

P (E⇤s|T ,A) = Lr
s(A

r
s = 0) (3)

where r is the root of the lineage tree. Since, the root of the tree does not contain any synthetic

mutation, Ar
s = 0, 8s 2 {1, 2, . . . , S}. For any internal node v with children u and w, the partial

conditional likelihood satisfies the recursive relation
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s =

h
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(4)

PtAv
s!Au

s
and PtAv

s!Aw
s
denote the transition probabilities on branches that connect v and u, and v

and w respectively. For each synthetic mutation s, we define a transition probability matrix given

by

P s
t =

2

64
1�ms ms

0 1

3

75 (5)

where ms denotes the fraction of cells harboring s and P s
t (i, j) denotes the probability of transition

from state i to state j along any branch of the tree. If a mutation assignment violates the Camin-
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Expression Likelihood        : The lineage is modeled as a Bayesian 
hierarchical clustering (BHC) of the cells. We compute the marginal 
likelihoods of all the partitions consistent with the given lineage tree based on 
a Dirichlet process mixture model. 

Hypothesis 1: each data point is independently generated from a mixture 
model and each cluster corresponds to a distribution component. 

Hypothesis 2: Data under an internal node comes from two or more clusters

Sokal parsimony criterion (i.e. a mutation is reversed), the log-likelihood is heavily penalized

(-100000) so that LinTIMaT prefers the tree without such violation.

For each leaf l of the tree, the partial likelihood is set to Ll
s = 1.

Expression likelihood

For the expression data likelihood, we model the lineage as a Bayesian hierarchical clustering

(BHC) (25) of the cells and used the likelihood formulation provided by BHC. BHC is a bottom-up

agglomerative clustering method that iteratively merges clusters based on marginal likelihoods.

Following several other methods we assume a diagonal matrix when computing gene expression

variance for each internal and leaf node (37; 38). Following BHC algorithm, we compute the

marginal likelihoods of all the partitions consistent with the given lineage tree based on a Dirichlet

process mixture model. The expression likelihood for a particular gene is given by the marginal

likelihood for the root of the tree and it essentially provides a lower bound on the marginal likelihood

of a Dirichlet process mixture model. The product of the likelihoods for all the genes is used to

determine the expression likelihood (LE) for the complete dataset.

LE(T ) = P (Y|T ) =
GY

g=1

P (Y⇤g|T ) (6)

where Y⇤g = {Y1g,Y2g, . . . ,YNg} is the vector containing expression values for gene g for all cells.

P (Y⇤g|T ) is the expression likelihood for the lineage tree which is also the marginal likelihood

(L r
g ) for the root of the tree

P (Y⇤g|T ) = L
r
g . (7)

For an internal node v with children u and w, T
v denotes the subtree rooted at v. Let Yv

g ⇢ Y⇤g

be the set of gene expression data at the leaves under the subtree T
v and Yv

g = Yu
g

S
Yw
g . To

compute the marginal likelihood for node v (L v
g ), we compute the probability of the data under

two hypotheses of BHC. The first hypothesis, H
v
1 assumes that each data point is independently

generated from a mixture model and each cluster corresponds to a distribution component. This

means that the data points y(i) in the cluster Yv
g are independently and identically generated from
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a probabilistic model P (y|✓) with parameters ✓. Thus, the marginal probability of the data Yv
g

under the hypothesis H
v
1 is given by

P (Yv
g |H

v
1 ) =

Z
P (Yv

g |✓)P (✓|�)d✓

=

Z 2

4
Y

y(i)2Yv
g

P (y(i)
|✓)

3

5P (✓|�)d✓
(8)

The integral in Eq. (8) can be made tractable by choosing a distribution with conjugate prior, as

discussed in Supplementary Methods.

The alternative hypothesis H
v
2 assumes that there are two or more clusters in Yv

g . Instead of

summing over all (exponential) possible ways of dividing Yv
g into two or more clusters, we follow

the strategy in BHC (25) and sum over the clusterings that partition the data Yv
g in a way that

is consistent with the subtrees T
u and T

w. This gives us the probability of the data under the

alternative hypothesis

P (Yv
g |H

v
2 ) = L

u
g L

w
g = P (Yu

g |T
u)P (Yw

g |T
w) (9)

In Eq. (9), P (Yu
g |T

u) and P (Yw
g |T

w) represents the marginal likelihoods of subtrees rooted in

nodes u and w respectively. Combining the two likelihoods of the two hypotheses leads to a

recursive definition of the marginal likelihood for the subtree T
v rooted at the node v

L
v
g = P (Yv

g |T
v) = ⇡vP (Yv

g |H
v
1 ) + (1� ⇡v)P (Yu

g |T
u)P (Yw

g |T
w) (10)

Where ⇡v is a parameter learned for weighting the two alternatives and is defined recursively for

every node. The recursive definition of ⇡v for node v is given by

⇡v =
↵�(nv)

dv
, dv = ↵�(nv) + dudv (11)

In Eq. (11), ↵ denotes a hyperparameter, the concentration parameter of the Dirichlet process

mixture model, nv is the number of data points under the subtree T
v and �(.) is the Gamma

function. For each leaf l, we set the values ⇡l = 1 and dl = ↵. Also, for each leaf l, the marginal
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Consensus Lineage Reconstruction: Infers cell clusters from individual 
lineages, performs a greedy matching to pair the clusters from different 
individual lineages based on the similarity of gene expression data, optimizes 
two distance functions, the first one minimizes the disagreement between 
consensus lineage topology and the individual lineages, the second one is 
minimized for improving the cluster matching.

The lineage tree can be cut at the nodes where rv goes from rv < 0.5 to rv > 0.5 to obtain clustering

of cells.

Combining lineage trees from multiple individuals to reconstruct a consensus

lineage tree

As mentioned in the Introduction, a key challenge when working with CRISPR mutation data is

the fact that these are not the same across di↵erent experiments. Thus, standard phylogenetic

consensus tree building cannot be applied to this data. Instead, given a set of lineage trees,

{T1, . . . ,TI} for I individuals, we construct a single lineage tree Tcons that jointly explains the

di↵erentiation of these individual organisms. Individual lineage trees that are input to the consensus

lineage reconstruction method are built on a leaf set of di↵erent number of cells. Tcons is constructed

by following the steps below.

1. For each individual lineage tree Ti, we infer the cell clusters based on gene expression data.

Let us assume that Ci is the number of clusters inferred from lineage tree Ti. We define K

as K = argmax
i2{1,...,I}

Ci.

2. For each individual lineage tree Ti for which Ci < K, we split clusters to obtain K clusters.

Splitting is done in decreasing order of the posterior probability rv until the desired number

of clusters is reached.

3. For each individual lineage tree Ti, we obtain the backbone tree T
c
i built using these K

clusters.

4. Tcons is a lineage tree built on a leaf set of K clusters. We first define a cluster matching

M as a matching where each cluster in each individual lineage tree Ti (or each leaf in T
c
i )

is matched with a leaf of Tcons. We reconstruct Tcons and a cluster matching Mcons by

minimizing an objective function given by

Tcons,Mcons = argmin
T ⇤,M⇤

!1

IX

i=1

S(T ⇤,T c
i ) + !2

KX

j=1

E (cj) (20)

where T
⇤ is a candidate consensus lineage, M⇤ is a candidate cluster matching, S(T ⇤,T c

i )

denotes the sum of pairwise leaf shortest path distance between candidate consensus lineage
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RESULTS
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LinTIMaT can refine subtrees in which all cells share the same barcode, can 
cluster cells with different barcodes together based on their cell types.

Clusters in LinTIMaT reconstructed lineages display better spatial enrichment.
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Consensus lineage improves on the individual lineages by uncovering more 
functionally significant neuronal, blood and progenitor cell clusters 
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CONCLUSION &
FUTURE WORK

• Incorporating complementary data types into a likelihood-based framework 
improves cell lineage reconstruction.

• In-silico validation study on c. elegans cell lineage 
• Analyzing other CRISPR-Cas9 lineage datasets 
• LinTIMaT is freely available at https://github.com/jessica1338/LinTIMaT

** This work was partially funded by the National Institutes of Health (NIH) [grants 1R01GM122096 and 
OT2OD026682 to Z.B.J.]. 
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