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ABSTRACT

While only recently developed, the ability to profile
expression data in single cells (scRNA-Seq) has al-
ready led to several important studies and findings.
However, this technology has also raised several new
computational challenges. These include questions
about the best methods for clustering scRNA-Seq
data, how to identify unique group of cells in such ex-
periments, and how to determine the state or function
of specific cells based on their expression profile. To
address these issues we develop and test a method
based on neural networks (NN) for the analysis and
retrieval of single cell RNA-Seq data. We tested var-
ious NN architectures, some of which incorporate
prior biological knowledge, and used these to ob-
tain a reduced dimension representation of the sin-
gle cell expression data. We show that the NN method
improves upon prior methods in both, the ability to
correctly group cells in experiments not used in the
training and the ability to correctly infer cell type or
state by querying a database of tens of thousands
of single cell profiles. Such database queries (which
can be performed using our web server) will enable
researchers to better characterize cells when analyz-
ing heterogeneous scRNA-Seq samples.

INTRODUCTION

Single cell RNA-seq (scRNA-seq) which profiles the tran-
scriptome of individual cells (as opposed to ensemble of
cells) has already led to several new and interesting find-
ings. These include the level of heterogeneity within a pop-
ulation of cells (1), the identification of new markers for spe-
cific types of cells (2) and the temporal stages involved in the
progression of various developmental processes (3).

While promising, single cell data have also raised new
computational challenges. An important and exciting appli-

cation of single cell sequencing is the ability to identify and
characterize new cell types and cell states (4,5). Recent work
has used single cell expression profiles to discover new cells
in developing lungs (6), new brain cells (4) and to refine sev-
eral aspects of cell state transitions in differentiation studies
(7,8). A key question that all such studies had to address is
how to determine the similarity of the expression profiles of
a pair (or larger sets) of cells? Another application for which
the ability to compare single cell expression data between
cells is critical in retrieval of similar cell types. Consider an
experiment in which a population of cells taken from a dis-
eased individual, or from a tumor, is profiled. One question
that may be important for such analysis is to identify the
specific types of cells that are present in the sample that was
profiled, for example to determine which immune cells may
have penetrated the diseased tissue (9). While such analy-
sis is often performed using markers, a much more compre-
hensive solution is to compare the various cell expression
profiles to a set of curated single cells with known types.

In the above examples, comparisons or similarity analy-
sis can either be performed using the measured expression
values or after performing dimensionality reduction which
may help reduce the noise associated with specific values.
Indeed, several methods have been used and developed for
performing such comparisons. The simplest, though one of
the most popular, is based on principal component analysis
(PCA). PCA has been used extensively for clustering single
cells (1,10,11). Other groups have developed new methods
which extend and improve PCA. These include pcaReduce
(12), which uses a novel agglomerative clustering method on
top of PCA to cluster the cells. SNN-Cliq (13) constructs a
shared k-nearest neighbor (KNN) graph over all the cells
with the weight of each edge being the difference between
k and the highest averaged ranking of the common KNN
between two cells. It then tries to find maximal cliques in
that graph in order to cluster the cells. ZIFA (14) uses a di-
mensionality reduction technique that takes into account
the dropout characteristics of single cell sequencing data.
SINCERA provides a pipeline for the analysis of single cell
gene expression data, one of whose tasks is to identify new
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cell types (15). Clustering is done via hierarchical clustering
using centered Pearson correlation as the similarity mea-
sure. SIMLR (16) is another open-source tool that performs
dimensionality reduction and clustering based on a cell sim-
ilarity metric.

While PCA and other unsupervised approaches have
been successful, they have mostly been used to analyze
datasets generated by a specific group. In contrast, for prob-
lems including retrieval we would like to obtain a reduced
dimension for all cell types and experiments across differ-
ent labs. In addition, PCA is an unsupervised method and
so it is not directly trying to distinguish between specific cell
types. Thus it may not be the best method for a discrimina-
tive analysis goal including retrieval of cell types based on
their expression.

Here, we propose to replace PCA-based dimensionality
reduction with a supervised method based on neural net-
works (NN). These networks are universal function approx-
imators (17) and, while training such networks takes longer
than the unsupervised methods discussed above, they are
very scalable in terms of training when using GPUs. Past
work has used unsupervised versions of NN for the analy-
sis of bulk expression data. For example, Tan et al. (18) used
denoising autoencoders (DAEs) to reconstruct bulk gene
expression data. Using these networks, they were able to as-
sign genes to clusters and find clusters enriched for genes
that are differentially activated between strains of Pseu-
domonas aeruginosas during cellular response to low oxy-
gen. Gupta et al. (19), use DAEs to analyze time series bulk
gene expression data. In contrast, while we also use DAEs
for pre-training our network, we fine-tune it with a super-
vised training pass afterwards to learn a latent representa-
tion that disentangles cell types.

Neural network models use multiple layers, often with
fewer nodes than the number of input values. The networks
are trained by maximizing a target function and in several
cases, one of the intermediate layers with small cardinality
(compared to the number of inputs) can serve as a reduced
dimensionality representation for the input data (20). In our
implementation we use gene expression values as the input
and formulate a target function whose goal is the identify
the correct cell type from the values computed by inter-
mediate layer nodes (Figure 1). We tested various architec-
tures for such networks, including architectures informed
by prior biological data (such as protein–protein (PPI) and
protein–DNA interactions (PDI)) and compared their per-
formance to prior methods for analyzing single cell data.
As we show, the learned networks captured several impor-
tant biological aspects of the data. We used the values from
the intermediate layer in the neural network (NN) for clus-
tering and retrieval of scRNA-seq data. As we show, using
the NN values improved performance when compared to
using the measured expression data, various unsupervised
methods for reducing the dimension of the data, and prior
methods for clustering single cell data.

MATERIALS AND METHODS

Datasets used in our analysis

We collected a total of 33 datasets with more than 17 000
single cell expression profiles from published papers and

from the Gene Expression Omnibus (21) (GEO). Supple-
mentary Table S1 and the Supporting Website provide full
details on these datasets. We used 3 of these datasets which,
combined, profiled 16 different types of cells and a total of
402 single cells for initial training, testing and evaluation
of the method. We used 31 of the 33 datasets for the re-
trieval analysis (to avoid using different datasets from the
same lab). All datasets are used in the retrieval application
which is available from the Supporting Website. We curated
all 33 datasets and assigned cell type labels to all single cell
expression profiles.

Normalization and imputation

We tested a number of methods for normalizing data ob-
tained from different labs and different platforms. We ini-
tially tested a novel normalization method for single-cell
RNA sequencing data which is based on pooling across cells
(22). However, while results for the clustering analysis using
this method were similar to the results presented below (see
Supplementary Figures S1 and 2), the method required us
to manually set several parameters (such as pool size) which
made it hard to use for the larger retrieval analysis. Instead,
following prior work we normalized the data by converting
all datasets to the the Transcripts Per Million (TPM) format
(10,23–25).

To combine PPI, PDI and single cell data (see below), we
have only used a subset of 9437 genes that were present in
the three single cell training datasets and in the PPI and PDI
datasets. For the much larger set of profiles used in the re-
trieval analysis, we used the same set of genes. Since these
datasets were generated by different platforms and groups,
counts for 2% of the genes were missing (on average) from
each dataset. In order to use the NN method for analyz-
ing these datasets, we performed imputation for these miss-
ing genes as follows. Missing values for the retrieval analysis
were first assigned the median gene expression value for the
cell and then imputed with the average expression value for
the k-nearest neighbor genes (we used k = 10), where near-
est neighbors were computed based on overall correlation
(26). Following TPM normalization and imputation, each
gene was normalized to the standard normal distribution
across samples since this is an essential step for NN train-
ing. We choose not to do the log-transformation because we
found that it did not help the performance.

To account for the drop-outs in the imputation proce-
dure, we tested a probabilistic model that would randomly
assign values for 0 to a specific fraction $z$ of the imputed
genes instead of relying on the nearest neighbors for as dis-
cussed above. We tested several different values for $z$ in-
cluding 0 (no drop outs), 0.01, 0.03 and 0.05 using a cross
validation strategy. Our results indicate that the best perfor-
mance is achieved using $z$ = 0 (see Supplementary Table
S7) and so this is what we used for the rest of the paper.

Protein–protein and protein–DNA interaction data

We used PPI and PDI data to determine the architecture
of some of the NN we tested. We constructed a weighted,
partially directed, protein interaction network using several
databases including BIOGRID (27), HPRD (28) and also
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Figure 1. Network architectures of NN models used in this paper. (A) Single-layered fully connected network. (B) Two-layered fully connected network. (C)
Single-layered network with TF and PPI cluster nodes (connected only to their member genes) and fully connected dense nodes. (D) Two-layered network
that is similar to the model in (C) but with an additional fully connected layer. Note that bias nodes are also included in each model.

used Post-translational Modification Annotations from the
HPRD. PDI were based on data from (29). The data con-
tained 160 000 PPI edges and 60 000 PDI edges between 16
671 genes and 348 TFs. The PPI data were weighted based
on the different types of experimental evidence supporting
each interaction (30).

A neural network representation of single cell expression data

We evaluated four types of neural network architectures
(Figure 1), and trained a total of five models (detailed num-
ber of nodes for each model are shown in Table 1). All ar-
chitectures include an input layer, one or two hidden layers
(more hidden layers did not improve performance) and an
output layer. The input layer encodes the expression values
for the genes that are used in the analysis. The output layer
encodes the probability of each cell type. Hidden layers are
functions of the input and are used to efficiently encode the

inputs such that the output can be the correct cell type given
a set of expression values.

Specifically, we formulate our neural network model as
follows. Let the vector x(i ) denote the output of ith hidden
layer. We use x(0) to represent the input of NN. To compute
x(i ), we perform forward propagation: (Equation 1)

x(i ) = a(W(i )x(i−1) + b(i−1)) (1)

where, a is the activation function, b is an intercept term and
W is the weight matrix of each edges in the neural network.
W and b are the parameters we need to learn.

We tested a number of possible activation functions in-
cluding sigmoid, linear, relu and tanh. Our analysis indi-
cates that the hyperbolic tangent activation function (tanh)
(Equation 2) leads to the best performance among these,
and so we used it in the remainder of this paper. The tanh
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Table 1. The five different types of NN used in the paper

No. Model Layer1#node Layer2#node #Parameters (million)

1 Dense 796 X 7.52 M
2 Dense 100 X 0.95 M
3 Dense 796 100 7.59 M
4 PPI/TF+dense 696 + 100 dense X 1.01 M
5 PPI/TF+dense 696 + 100 dense 100 1.08 M

Note that No.1 and No.2 represent the same architecture (Figure 1A) using different number of hidden layer nodes. The 696 in the PPI/TF models is
from 348 TFs + 348 PPI groups. The number of nodes in the Dense models corresponds to the number of nodes in PPI/TF models for comparison. The
additional 100 dense in each model are manually selected.

function is defined as:

tanh(x) = 1 − exp(−2x)
1 + exp(−2x)

(2)

For the output layer, which performs discrete classifica-
tion, we use the softmax activation function (Equation 3).
Let x denote the input of the output layer (which is also the
output of the last hidden layer), then we have the following:

output(x)

= softmax(x) =
[

exp(x1)∑
c exp(xc)

· · · exp(xC)∑
c exp(xc)

]T

(3)

Where, C encodes indices for all the cell types in training
set.

Here, the output f (x(0))c of each node c in the output
layer represents the probability:

f (x(0))c = p(y = c|x(0)) (4)

that the input sample x(0) belongs to cell type c. The loss
function is categorical cross-entropy function (Equation 5):

loss = − log f (x(0))y (5)

where, y is the true cell type (label) of the input x(0).

Architectures used in our NN method

While all networks used the same input and output layers,
they differed in the structure and number of hidden layers.
We tested models with 1 or 2 fully connected hidden lay-
ers (for the NN with 2 hidden layers, 796 nodes in the first
hidden layer and 100 nodes in second hidden layer, Figure
1A and B). While these models have at most 2 hidden lay-
ers, the number of parameters that are fitted is very large
(the architecture with the most parameters had 7.6 million
parameters).

The above architectures do not make use of prior biolog-
ical knowledge. To incorporate such information, we also
tested architectures that were based on PPI and PDI. Un-
like the fully connected layers in the architectures described
above, when using the biological data we connect the nodes
in the first hidden layer to only a small subset of the input
nodes. We do this by fixing the weight to 0 for all connec-
tions from genes to PPI/TF nodes for which the genes do
not belong to that node. This greatly reduces the number of
parameters that needs to be learned which can help with is-
sues related to overfitting. Specifically, we have 348 hidden
layer nodes based on the PDI data (one for each TF, con-
nected only to genes regulated by that TF) and 348 nodes

for the PPI. To divide the PPI graph into 348 subnetworks
(where each subnetwork is connected to a node in the hid-
den layer) we used the ClusterOne (31) algorithm, which
produces overlapping clusters so that, similar to the dense
nodes, a gene can be connected to more than one PPI node.
We also added 100 fully connected nodes to the first hid-
den layer which account for missing data and TFs in the
PPI and PDI––for instance if we do not have a set of tar-
gets for a specific TF that should be grouped together or if
the PPI network is missing edges leading to missed clusters
(PPI nodes). Still, the total number of parameters for this
architecture is about 1 million, an order of magnitude less
than for the fully dense architectures.

Unsupervised pre-training

The discussion above focused on supervised learning of NN
(where the label is the cell type). In addition to supervised
learning NN can also use unlabeled data, a practice that has
proven useful in other domains (32). A specific type of this
NN is termed ‘denoising autoencoder (DAE)’ since the goal
is to reconstruct the input layer values using a small num-
ber of hidden layer nodes (since the target is the input ex-
pression values, no labels are needed to train autoencoders).
While unsupervised, autoencoders have been shown to suc-
cessfully identify input combinations that affect the overall
set of values (33–35). Given the large number of parameters
in a NN the ability to train autoencoders and use the param-
eters learned as priors for a supervised learning procedure
improves the initialization of the model and often leads to
better generalization performance (32). We have thus tested
the use of 1-layer DAE when testing the method on large
datasets (retrieval datasets). We train DAE to reconstruct
the original input from corrupted input with the noise sam-
pled from the Normal distribution with zero mean and 0.1
standard deviation. The architecture of DAE is similar to
Figure 1A except that the output layer is changed to be the
reconstructed input. All layers in the DAE use the tanh acti-
vation function and mean square error as the loss function.
Here we used 100 and 796 nodes in the hidden layer of the
DAE, similar to the numbers used for the supervised models
to make sure that the weights of DAE can be used as pre-
trained weights of supervised models. We copy the trained
weights of DAE to the dense nodes of our models.

Learning model parameters

All models were implemented using Keras ( https://github.
com/fchollet/keras) with some modifications to accommo-
date the sparse layer connections for TF and PPI nodes. All
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the NNs are first initialized with Glorot initialization (36).
The models are trained using stochastic gradient descent
with Nesterov accelerated gradient with a learning rate of
0.1, decay 10−6, momentum 0.9. The learning rate for epoch
K is the original learning rate multiplied by 1/(1+decay*K).
We used 100 epochs (which were manually selected and
enough for reaching convergence) to train each model with
a mini-batch size of 10, which is the number of samples to fit
at each update step. Detailed information about the dimen-
sions of the different architectures is provided in Table 1. It
took us 30 s to train the largest supervised NN (7.6 million
parameters, 402 cells), 40 min to train the largest unsuper-
vised NN (15 million parameters, 17 000 cells) on a machine
with 4 Intel(R) Xeon(R) CPU E5-2620 v3 (2.40GHz each
core, 24 cores in total), 4 Nvidia GTX 1080 GPUs and 128
GB RAM. Note that each NN model including the one used
for the final outcome of our method (retrieval analysis in
Table 4) is only trained using a single GPU.

Biological analysis of learned models

To determine the biological relevance of the parameters
learned from the NN we analyzed significant gene groups
for each cell type in the PPI/PDI model (Figure 1C). For
this we identify the top 10 most highly weighted (hidden
layer) nodes for each output layer node (corresponding to
the different cell types). Some of the selected nodes are ex-
plained by the TF or the PPI they represent. For the other
(100 nodes in the hidden layer initially connected all input
genes) we perform GO analysis based on the set of input
genes that are connected to these nodes with a high (abso-
lute value) weight. We used gprofiler (37) to perform GO
analysis because it provides command-line interface for ac-
cess.

Comparisons to prior clustering and dimensionality reduction
methods

To perform dimensionality reduction based on the NN re-
sults we extract the values computed by the last hidden layer
of each architecture we tested. We next use a simple cluster-
ing method (K-means++ clustering (38)) to perform unsu-
pervised grouping of cells using a test set (not used in the
NN training) and the results are compared to prior methods
suggested for clustering single cell expression data. For such
comparisons, we perform experiments in which we left out
2, 4, 6 or 8 random cell types of the 16 types in our analysis
set. We next cluster the left out data using the reduced repre-
sentation obtained from the last hidden layer of the NN and
use the adjusted random index (ARI) (39) to compare the
clustering results with the true labels. ARI counts the num-
ber of agreements and disagreement between two groupings
while adjusting for random performance into account. It is
defined as follows. Let X = {X1, X2, ..., Xr}, Y = {Y1, Y2,
..., Ys} be two groupings. We can summarize the overlap be-
tween X and Y using a table N where Ni j = |Xi

⋂
Yj | is the

number of objects in common. Let ai = ∑
jNij, bj = ∑

iNij,

n be the total number of samples, then we set:

ARI = Index − ExpectedIndex
MaxIndex − ExpectedIndex

=
∑

i j

(Ni j

2

) − (
∑

i

(ai
2

)∑
j

(b j

2

)
)/

(n
2

)
1
2 (

∑
i

(ai
2

) + ∑
j

(b j

2

)
) − (

∑
i

(ai
2

)∑
j

(b j

2

)
)/

(n
2

)
(6)

We repeat the experiment for 20 times with fixed random
seeds 0–19, each time with different random left out cell
type and obtain an average ARI value. We also test other
scoring methods for clustering: adjusted mutual informa-
tion (40), Fowlkes–Mallows score (41) , homogeneity, com-
pleteness and v-measure scores (42).

Cell retrieval method

To measure the performance of cell retrieval, the percentage
of the desired cell type in the top k nearest neighbors (here,
we used k = 100) is calculated for different single cell expres-
sion data representations (NN, PCA, measured values). To
reduce the ability of the retrieval analysis to rely on artifacts
for correctly identifying the cell types (e.g. experiments from
the same lab) we only perform this analysis on cell types that
were profiled in different datasets out of the 31 used for this
analysis. We thus used 9 different cell types for this analysis
though the database itself contains over 100 cell types (in-
cluding subtypes). Cell types that are not selected can thus
still be in the retrieved set of k nearest cells which makes the
analysis more similar to how we envision the usage of such
database. We use the mean of average precision (MAP) to
evaluate the retrieval performance. Average precision corre-
sponds to the area under the precision-recall curve for the
retrieved cells. The final result for all cell types is a weighted
mean so that every dataset (cell type) has equal weight.

Hyper parameter selection

To select hyper parameters, we split the data into a training
and test set randomly with 90% (or 80%) of the data used
for training and 10% (or 20%) of the data for testing. We
repeat this process 10 times and select the best hyper pa-
rameter based on the average test performance in these 10
random experiments. Note that since we evaluate the meth-
ods in an unsupervised (clustering) setting, this training uses
a completely independent dataset from any of the data we
use for evaluation. The hyper parameters for the learning
rate affects the training time but it does not affect the per-
formance very much. We performed additional analysis to
test the influence of different rates on accuracy. We explored
different hyper parameters for a dense model with combina-
tions of learning rates [0.01, 0.1], momentum [0.5, 0.9] and
decay [0.001, 1e-06]. The results, presented in Supplemen-
tary Table S9, are very similar for all these values.

RESULTS

We learned parameters for the different NN architectures
discussed in the ‘Materials and Methods’ section and used
the resulting models to test the method and to compare it to
prior methods for dimensionality reduction of scRNA-Seq
data and for clustering and comparing such data.
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Testing and comparing the NN method

To test our method and to compare it to prior methods for
clustering single cell time series expression data we used 3
single cell expression datasets which, combined, included 16
cell types (See Supplementary Table S8 for complete list).
Data were downloaded mostly from GEO and processed as
discussed in ‘Materials and Methods’. We identified 9437
genes that had expression values in all training datasets and
used them to learn the NN using various architectures. For
each architecture, input values were directly connected to
the first hidden layer and the output layer predicted the true
cell type (label) for each of the datasets. Thus, the goal of the
NN was to identify a reduced dimension representation of
the expression values (where the number of nodes/values is
a function of the specific architecture) that leads to the most
accurate assignment of cell type for each dataset. Training
and testing accuracy of all NN models reached nearly 100%.

Given the ability of the method to accurately assign train-
ing data, we next asked how well the resulting representa-
tion can be used on test (unobserved) data. For this we per-
formed a number of different analyses in which we divided
the single cell datasets using subset of the cell types to learn
the model and the rest to test it. For testing, we compared
the ability of a simple clustering method (k-means++ algo-
rithm with k representing the known number of left out cell
types) to accurately sub-divide test data according to their
cell types. For this we first learn parameters for the NN us-
ing the portion of cells used for training. Next, for each of
the test cells we run them through the NN and extract the
values of the smallest hidden layer (depending on the archi-
tecture) and use these vectors in the clustering procedure.
Thus, clustering is based on gene expression combinations
determined by the NN. We also note that the training and
test sets are comprised of different cell types and so this is
not a supervised classification task. Instead, the goal is to
see if the parameters learned using the labeled data can im-
prove the unsupervised analysis of the other cell types. We
also calculate the performance of pre-trained models, and
the result are similar to the model without pre-training. We
used the clustering results to compare the NN-based analy-
sis to a number of unsupervised clustering and dimension-
ality reduction methods that have been proposed for single
cell analysis. Specifically, we compared our method to PCA,
pcaReduce, Independent Component Analysis (ICA), Non-
negative matrix factorization (NMF), t-distributed stochas-
tic neighbor embedding (tSNE) ,SINCERA, SIMLR and
SNN-Cliq. For the unsupervised dimensionality reduction
methods (PCA, ICA, NMF, tSNE) we tested several pos-
sible settings (number of components). Note that we were
unable to test more than 10 components for tSNE and
ICA since these methods generated run time errors (NaN,
Inf values) when using more than 10 components. As for
the other methods, PcaReduce generates hierarchical struc-
ture of clustering based on PCA reduced dimensions. SIN-
CERA provides a pipeline of analyzing single cell data, in-
cluding clustering. For clustering, SINCERA uses hierar-
chical clustering, tight clustering (43) or consensus cluster-
ing (44). We only show the result of hierarchical cluster-
ing here because it is the default setting of SINCERA and
the other clustering methods often generated error messages

when applied to our dataset. SNN-Cliq uses shared near-
est neighbors (SNN) to define the similarities between cells
and then clusters them using graph based methods. SNN-
Cliq sometimes generates error messages when the number
of cell types (k) is 2, so we left it out in this comparison.
We also tried to compare our results to ZIFA. However,
ZIFA did not finish after running for two days when try-
ing to cluster 300 cells with 9437 expression values each.
To improve its run time we reduced the number of genes
to 1356 (selecting only genes that have non-zero values in
90% of samples) but the performance of ZIFA on this data
was not good (much lower than the results presented in the
comparison table) and so we left it out. Table 2 presents
a comparison of the clustering results for all methods we
tested and Figure 2 presents a visualization of these results
for a few of the methods. As can be seen, in general the
variants of the NN we tested outperformed all other meth-
ods. One way to explain this result is the fact that unlike
other methods our method learns the best way to represent
a reduced dimension for single cell data (even though the
comparison is based on an unsupervised clustering task and
learning is done on a completely different set of experiments
and cell types) whereas the other methods are fully unsu-
pervised. While all NN architectures performed better than
other methods, the best was the PPITF variant that inte-
grated prior biological knowledge and dense nodes which
did slightly better than the Dense 796 node networks. How-
ever, as we show below, when testing on a much larger set
of data the architectures that incorporate prior biological
knowledge do better than the fully dense ones.

Functional analysis of hidden layer nodes

While NN are often treated as ‘black boxes’ following recent
studies we attempted to characterize the input and hidden
nodes (genes/TFs) that had the highest impact on the abil-
ity to accurately classify various cell types (18). Such anal-
ysis can provide both, functional interpretation of the pa-
rameters that are learned for the method as well as char-
acterization of the different types of genes and their regu-
lators that are most relevant to specific types of cells. To
perform such analysis, we analyze the top 10 most highly
weighted groups (hidden nodes) for each cell type using the
NN in Figure 1C. To analyze the groups we either used
the known characteristics of the node (since, as mentioned
in ‘Materials and Methods’ some of the nodes represent
groups of genes known to be co-regulated by the same TF
or to be interacting (PPI)) or GO analysis on densely con-
nected nodes to determine the function of genes associ-
ated with that node. Table 3 presents results for a subset
of the cell types and nodes. As can be seen, the top scor-
ing nodes were often very relevant for the specific func-
tions that are performed by the cells or the TFs that reg-
ulate these functions. For example, the learned NN cor-
rectly associated genes related to proliferation and differ-
entiation with ES cells while nodes that scored high for
immune response categories were mainly associated with
Bone Marrow-derived Dendritic Cells (BDMCs) (45–49).
See also Supporting Website for tables summarizing more
than 1000 significant GO categories for combinations of cell
types and nodes based on this analysis.
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Figure 2. 2D visualizations for some of the methods in Table 2. Colors represents cell types as shown below the figures. (A) 2D TSNE of the original data.
(B) 2D PCA for SIMLR-transformed data. (C) 2D TSNE of the second layer of the PPI/TF NN. (D) 2D PCA of the second layer of the PPI/TF NN.

In addition to the analysis of connection weights for the
NN that were learned using labeled data, we also analyzed
the values for the nodes obtained by the pre-trained mod-
els. Recall that for the pre-training we are using a fully un-
supervised approach where the goal is to reconstruct the in-
put data using a small set of highly connected nodes (100 in
our case). We hypothesized that some of the values learned
for these nodes may actually reflect key genes that either
regulate other genes (and so their values are enough to re-
construct the full expression set) or important groups of co-
expressed genes. We thus selected, for each of the 100 dense
nodes in the pre-trained mode, the set of three most simi-
lar genes based on Pearson correlation. The results are pre-
sented in Supplementary Table S11. As can be seen, many
of these genes are ribosmal genes which are indeed a large
and coherently expressed group that is captured by some of
the nodes. GO analysis of the selected nodes (Supplemen-
tary Table S12 shows part of the results.) indicated that a a
significant category for these is ‘nucleic acid binding’ (cor-
rected P-value = 9*10−9) indicating that the model captures
some of the TFs that are likely regulating the expression in

the different single cell types. See Supporting Results and
Website for complete details.

In addition to edge weight-based analysis discussed
above, we have also performed an analysis of the signifi-
cant input genes for each cell type analysis using DeepLift
(https://arxiv.org/abs/1704.02685). Instead of focusing di-
rectly on the parameters learned by the model for such anal-
ysis, DeepLift works by comparing the activity in each in-
ternal node between a positive input (correct cell type) and a
reference input (a vector of zeros in this case) and then prop-
agates these differences to all nodes in the network including
input nodes. Thus, DeepLift can directly assign significance
to each of the input nodes (genes). Using DeepLift we se-
lected the top 100 genes for each cell type and performed
similar gprofiler analysis on this set. The results agreed in
many cases with the edge weight analysis discussed above.
For example, for ES cells both analyses correctly identified
E2F3 and IRF6 as two of the top TFs (though the edge
weight based method had better P-values for these). Sim-
ilarly for BDMCs both identified immune response as the
top function (though here DeepLift had slightly better P-
values for one function). See Supplementary Table S10 for
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Table 2. Average performance of different scoring metrics for clustering four cell types not used in the NN training

Feature Homo Comp Vmes ARI AMI FM Average

Original 0.785 0.875 0.82 0.73 0.775 0.841 0.805
pca 2 0.833 0.883 0.854 0.786 0.821 0.873 0.842
tsne 2 0.179 0.169 0.172 0.113 0.127 0.391 0.192
ica 2 0.833 0.882 0.853 0.785 0.82 0.873 0.841
nmf 2 0.659 0.735 0.69 0.592 0.638 0.75 0.677
pca 5 0.754 0.863 0.798 0.685 0.741 0.814 0.776
tsne 5 0.034 0.035 0.034 -0.009 -0.006 0.332 0.07
ica 5 0.662 0.839 0.733 0.615 0.649 0.787 0.714
nmf 5 0.707 0.848 0.76 0.693 0.689 0.824 0.753
pca 10 0.759 0.873 0.805 0.695 0.747 0.823 0.784
tsne 10 0.049 0.043 0.045 0.0 0.004 0.299 0.073
ica 10 0.452 0.733 0.545 0.416 0.431 0.706 0.547
nmf 10 0.717 0.812 0.751 0.676 0.688 0.812 0.743
pca 50 0.692 0.867 0.759 0.637 0.68 0.799 0.739
nmf 50 0.481 0.625 0.532 0.427 0.457 0.681 0.534
pca 100 0.742 0.879 0.795 0.695 0.731 0.829 0.779
nmf 100 0.397 0.635 0.472 0.358 0.37 0.672 0.484
pcaReduce 0.768 0.89 0.821 0.747 0.754 0.849 0.805
SIMLR 20 0.793 0.806 0.799 0.718 0.77 0.82 0.784
SIMLR 30 0.806 0.82 0.811 0.747 0.779 0.838 0.8
SIMLR 40 0.834 0.831 0.83 0.747 0.797 0.835 0.812
SNN-Cliq 0.751 0.905 0.802 0.716 0.726 0.843 0.79
sincera hc 0.807 0.929 0.856 0.797 0.794 0.884 0.845
Dense 1 layer 100 0.905 0.897 0.9 0.872 0.885 0.915 0.896
Dense 1 layer 796 0.895 0.887 0.89 0.856 0.874 0.904 0.884
Dense 2 layer 796/100 0.892 0.882 0.886 0.854 0.869 0.903 0.881
PPITF 1 layer 696 + 100 0.897 0.896 0.896 0.866 0.882 0.911 0.891
PPITF 2 layer 696 + 100/100 0.906 0.902 0.903 0.874 0.89 0.917 0.899
Dense 1 layer 100 pre-train 0.883 0.871 0.877 0.838 0.858 0.892 0.87
Dense 1 layer 796 pre-train 0.887 0.872 0.879 0.843 0.86 0.896 0.873
Dense 2 layer 796/100 pre-train 0.884 0.875 0.879 0.838 0.862 0.894 0.872
PPITF 1 layer 696 + 100 pre-train 0.878 0.873 0.875 0.83 0.858 0.889 0.867
PPITF 2 layer 696 + 100/100 pre-train 0.9 0.894 0.897 0.87 0.881 0.914 0.893

Results are averaged over 20 clustering experiments (using different random initializations). AMI: adjusted mutual information; ARI: adjusted random
index; Comp: completeness; FM: Fowlkes–Mallows; Homo: homogeneity; Vmes: v-measure. Bold represents the highest value for each column.

Table 3. Examples of highly ranked nodes for some of the cell types used for learning of the NN

Cell type TF/PPI/dense node Corrected P-value GO function/reference

Stem cells (ES) Dense 35 3.25E-07 Cell differentiation
Stem cells (ES) Dense 24 4.44E-15 Factor: E2F-3; (45)
Stem cells (ES) Dense 24 5.78E-12 Factor: IRF6; (46)
Stem cells (ES) Dense 24 2.53E-08 System development
BMDC Dense 10 1.56E-05 Immune system process
BMDC Dense 67 1.59E-11 Positive regulation of immune system process
BMDC Dense 36 2.06E-06 Response to cytokine
Fibroblast ppi 223 3.16E-06 Focal adhesion (47)
Fibroblast ppi 301 2.85E-20 Acetyltransferase complex (48)
Zygote ppi 10 6.85E-07 Regulation of cell proliferation
Zygote ppi 280 7.36E-09 Cell junction
Zygote TF: foxd3 X TF: foxd3 (49)

Some of the nodes were based on TF–gene interactions and thus represent a specific TF (Foxd3). For these, we rely on the function of the TF to characterize
the node in the table. Other nodes are either based on PPI (e.g. PPI223) or on groupings learned by the algorithm (e.g. dense24). For thes, we performed GO
analysis on the set of highly ranked genes for these nodes. Several other relevant TFs and functions were found for other cell types as well. See Supporting
Website for complete list.

a comparison of P-values for DeepLift and our edge weight
analysis and Supporting Website for the full DeepLift re-
sults.

Retrieval of single cells based on expression

In most single cell studies, including cancer (23), brain stud-
ies (50–53) and more, several different types of cells are pro-
filed in the same experiment. In most cases at least some of

the cells cannot be fully assigned since either they do not
contain any of the known markers or they contain several
subsets of such markers. Such cells are usually analyzed us-
ing clustering to identify several groups within the sampled
cells. However, such analysis is unsupervised and so its not
always clear what each of the clusters corresponds to. Iden-
tifying the composition of cells is important, for example in
cancer studies where notable differences between outcomes
have been attributed to the amount of immune cells that are
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present in the tumor. Thus, an important problem in single
cell expression analysis is assignment. One way to address
this problem is to compare uncharacterized cells to cells that
have already been characterized by prior experiments either
using follow-up studies or because of their known origin.
To enable such analysis we collected 31 single cell expres-
sion datasets with more than 17 000 samples and created a
database in which we stored both the expression measure-
ments for these cells as well as the assignment for the cell
from the paper/experiment in was profiled in (if available).
Using such database we can find, for each new cell profiled
in an experiment, the most similar cells in the database and
based on their annotations, annotate the uncharacterized
cells.

A key issue for implementing such strategy is how to iden-
tify the most similar cells in the database when given a new
query cell. An alternative to using the measured expression
values, which is more efficient and may be more robust to
noise is to first reduce the dimension of the database data
and the query cell and then perform the retrieval search in
the reduced dimensional space. Such reduction can be done
by several methods as discussed above and can cut the stor-
age requirements and run time by over 80%, depending on
the architecture used. Specifically, for the 14 000 queries we
performed on the 17 000 cells in the database we reduced
the run time from 25 min (when using the observed expres-
sion values for 9437 genes) to <5 min when using the 796
features obtained from the NN. The datasets of the query
cell types are listed in Supplementary Table S2.

In addition, and most importantly, such reduced dimen-
sion greatly improves performance. To test various ways of
querying single cell expression data we held out complete
datasets for which we had a similar dataset in the database
from a different lab/paper. This helps ensure that results are
not effected by unique lab methods but are rather related
to biological similarities. We identified 31 different datasets
that, combined, profiled close to 14K cells. For each of these
held out datasets we searched for the most similar cells in
our database. As before, we compared the NN results to re-
sults obtained when using the measured expression values
and PCA with 100 or 796 dimensions. As for the NNs, we
tested two NN variants. The first is similar to the one de-
scribed above for clustering while the second is based on
using DAE to initialize the parameters of the network (us-
ing unlabeled data) followed by supervised learning as dis-
cussed in ‘Materials and Methods’.

To evaluate the different methods, for each query cell we
identify the top k most similar cells in the database (where
similarity is based on Euclidean distance for all genes or
for the reduced dimension representation obtained by each
method). We use k = 100 in this paper, though results are
similar when using k = 10. We next use the top k matches to
compute the MAP for the correct cell type for each query
(‘Materials and Methods’).

As can be seen in Table 4, all methods that relied on re-
duced dimensions did much better than the method that
used the measured expression values (20% average improve-
ment for PCA and almost 40% improvement for some of
the NN methods when compared to using the measured ex-
pression values for all genes). Comparing the reduced di-
mensionality methods themselves, we observe that NN with

more hidden layers (in our case 2) are doing, on average,
better than NN with a single hidden layer indicating that
non linear relationships may be important for characteriz-
ing single cell expression. These multi-hidden layer NN are
also performing better than PCA.

We also observe that both, the use of prior biological
knowledge to define the NN architectures (PPITF net-
works) and the use of pre-training using DAE improves
the overall accuracy of the retrieval. Specifically, the best
performing method (achieving an improvement of more
than 11% over PCA) is the PPITF 2 layer 696+100/pretrain
which combines all these features (2 layers, pre-training and
the use of prior knowledge). Other architectures that use
prior knowledge are also better than their dense counter-
parts. In contrast, DAE on their own (fourth and fifth rows)
are not as effective as supervised models and so they are
probably best for initializing rather than for final model se-
lection.

DISCUSSION AND FUTURE WORK

While single cell analysis holds great promise, it also raises
new questions. Given the number of cells that are profiled in
each experiment, which can reach thousands (51,54), new
methods are required for accurately and efficiently clus-
tering these data while overcoming issues related to the
stochastic nature of gene expression even in similar cells,
noise and missing values. A related problem is the ability to
compare expression profiles from cells so that cell type as-
signments can be determined not just based on a few marker
genes but rather based on the overall expression of all genes
in the cells profiled.

In this paper, we developed and tested solutions based
on deep neural networks for these problems. The advantage
of such networks is that they can learn the importance of
different combinations of gene expression levels for defin-
ing cell types and such combination are usually more ro-
bust than values for individuals genes or markers. We tested
several NN architectures, including architectures that are
constrained by prior biological knowledge. As we show, the
NN achieve very good classification performance on train-
ing data and improve upon prior methods when used to
cluster datasets from experiments that were not used in the
training. We also performed functional analysis of the set
of highly weighted nodes for each cell type and showed that
even though NN are often described as a ‘black box’ learn-
ing method, many of these are functionally related to the
cell type they were selected for.

Several methods have relied on clustering to annotate
genes in single cell studies (3,16). Here we used NN for
this task. Unlike most prior methods that relied on co-
expression for clustering, our method is based on the identi-
fication of a set of genes that, combined, can be used to dis-
criminate between different cell types. These can either be
co-expressed, co-repressed or not expressed at all and they
are selected as part of a training procedure rather than as a
post-processing step. Such analysis may prove beneficial for
better grouping of genes since it is supervised which allows
it to overcome groupings that are based on non-cell type
aspects (for example, cell cycle phase)
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Table 4. Average retrieval performance across the different cell types

Models HSC 4cell ICM Spleen 8cell Neuron Zygote 2cell ESC Mean

Original 0.081 0.361 0.058 0.987 0.279 0.372 0.468 0.556 0.705 0.430
PCA 100 0.299 0.508 0.01 0.996 0.351 0.646 0.539 0.616 0.722 0.521
PCA 796 0.227 0.548 0.022 0.994 0.242 0.622 0.419 0.642 0.833 0.505
DAE 100 0.236 0.411 0.016 0.973 0.503 0.628 0.193 0.728 0.544 0.470
DAE 796 0.14 0.423 0.035 0.992 0.399 0.692 0.399 0.743 0.432 0.473
Dense 1 layer 100 0.102 0.662 0.038 0.953 0.739 0.485 0.522 0.717 0.604 0.536
Dense 1 layer 100 pre-train 0.23 0.49 0.153 0.984 0.463 0.64 0.408 0.734 0.532 0.515
Dense 1 layer 796 0.082 0.599 0.096 0.988 0.472 0.389 0.563 0.732 0.683 0.512
Dense 1 layer 796 pre-train 0.116 0.515 0.073 0.991 0.463 0.702 0.423 0.714 0.446 0.494
Dense 2 layer 796/100 0.069 0.77 0.065 0.956 0.896 0.563 0.275 0.673 0.583 0.539
Dense 2 layer 796/100 pre-train 0.164 0.648 0.035 0.987 0.715 0.633 0.498 0.747 0.507 0.548
PPITF 1 layer 696 + 100 0.078 0.636 0.148 0.965 0.667 0.464 0.202 0.314 0.63 0.456
PPITF 1 layer 696 + 100 pre-train 0.168 0.557 0.028 0.982 0.55 0.647 0.447 0.665 0.569 0.513
PPITF 2 layer 696 + 100/100 0.068 0.771 0.182 0.956 0.849 0.561 0.415 0.553 0.71 0.563
PPITF 2 layer 696 + 100/100
pre-train

0.397 0.614 0.185 0.975 0.725 0.626 0.435 0.688 0.554 0.578

Bold indicates the highest value for each column.

As a final application we used the reduced representation
obtained form the NN to query a large database of over
17K single cell expression data in order to determine the
cell type of a newly profiled single cell. As we show, us-
ing such representation greatly improved the performance
of the retrieval analysis while reducing the overall runtime
and storage required. The Supporting Website (http://sb.cs.
cmu.edu/scnn/) provides an implementation of the retrieval
method which can be used by researchers to determine cell
types for newly profiled single cells.

Our supervised training strategy is focused on cell
type-specific identification. Such target function leads the
method to ignore similarities between expression profiles
that are based on other commonalities which may be shared
across cell types, for example cell cycle phase. Researchers
interested in such commonalties can either train a separate
method where the target reflects them or use the autoen-
coder version which is fully unsupervised and so likely to
identify additional commonalties beyond cell types.

While the results are encouraging, there are several direc-
tions for future work which we would like to explore. These
include testing more involved (deeper) architectures, inte-
grating additional types of prior biological knowledge into
the model and an automated tool that can download new
single cell expression data in order to increase the set used
by the retrieval application. A major challenge with the lat-
ter direction is the ability to automatically assign cell type
from published expression data given the various ways in
which people define and encode such information.
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